Advertisement

Current Microbiology

, Volume 50, Issue 5, pp 233–237 | Cite as

Isolation and Functional Characterization of Siderophore-Producing Lead- and Cadmium-Resistant Pseudomonas putida KNP9

  • Manishi Tripathi
  • Hitendra P. Munot
  • Yogesh Shouche
  • Jean Marie Meyer
  • Reeta Goel
Article

Abstract

Heavy metals, being phytotoxic, cause growth inhibition and even plant death. Siderophore-producing bacterial strain KNP9 is growth promoting and has been isolated from Panki Power Plant, Kanpur, India. It simulated significant (p > 5%) root and shoot growth of mung bean to the extent of 16.48% and 28.80%, respectively in the presence of CdCl2 (110 μM). However, the increase in root and shoot growth was 20% and 19.5%, respectively, in the presence of (CH3COO)2Pb (660 μM). Moreover, concentration of accumulated lead and cadmium in root and shoot was also reduced in the presence of this isolate ranging from 37.5 to 93.19%. A moderate reduction in chlorophyll content (39.14%) in the presence of 110 μM CdCl2 was rescued by bioinoculant KNP9. However, the 19.58% decrease in chlorophyll content in the case of lead acetate remained unchanged even in the presence of KNP9. Nevertheless, 16S ribosomal DNA (rDNA) sequencing identified KNP9 as a strain of Pseudomonas putida.

Keywords

Cadmium Chlorophyll Content Mung Bean Pseudomonas Putida Lead Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by Department of Biotechnology grant to R.G. The senior author (M.T.) acknowledged the CSIR for financial assistance in terms of J.R.F. We also thank Dr. Mahesh Kumar, Epidemology and Preventive Medicine C.Vsc., for the heavy metal analysis and Dr. B. Saini for carefully reading the manuscript.

Literature Cited

  1. 1.
    Bar-Ness, E, Chen, Y, Hadar, H, Marschner, H, Romheld, V 1991Siderophores of Pseudomonas putida as a iron source for dicot and monocot plantsPlant Soil130231241CrossRefGoogle Scholar
  2. 2.
    Bossis, E, Lemanceau, P, Latour, X, Gardan, L 2000The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: Current status and need for revisionAgronomie205163CrossRefGoogle Scholar
  3. 3.
    Buat-Menard PE (1984) Changing metal cycles and human health. In: Nriagu (ed). Dahlem Konferenzen. Berlin, Springer-VerlagGoogle Scholar
  4. 4.
    Burd, GI, Dixon, GD, Glick, BR 2000Plant growth promoting bacteria that decrease heavy metal toxicity in plantsCan J Microbiol46237245CrossRefPubMedGoogle Scholar
  5. 5.
    Canovas, D, Cases, I, de Lorenzo, V 2003Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysisEnviron Microbiol512421256CrossRefPubMedGoogle Scholar
  6. 6.
    Carson, KC, Meyer, JM, Dillworth, MJ 2000Hydroxamate siderophores of root nodule bacteriaSoil Biol Biochem321121CrossRefGoogle Scholar
  7. 7.
    Crowley, DE, Reid, CPP, Szaniszlo, PJ 1988Utilization of microbial siderophores in iron acquisition by oatPlant Physiol87680685Google Scholar
  8. 8.
    Fuchs, R, Shafer, M, Geoffroy, V, Meyer, JM 2001Siderotyping: A powerful tool for the characterization of pyoverdinesCurr Top MedChem13135CrossRefGoogle Scholar
  9. 9.
    Garrity GM, Bell JA, Lilburn TG (2004) Taxonomic outline of the prokaryotes. In: Bergey’s manual of systematic bacteriology. New York, Springer-Verlag, 2nd edn. Google Scholar
  10. 10.
    Glick, BR 1995The enhancement of plant growth by free living bacteriaCan J Microbiol41109117Google Scholar
  11. 11.
    Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, LondonGoogle Scholar
  12. 12.
    Gupta, VK 1993Soil analysis for available micro-nutrientsTandon, HLS eds. Methods of analysis of soils, plants, waters and fertilizersFertilizer Development and Consultation OrganizationNew Delhi, India26HLS48Google Scholar
  13. 13.
    Hiscox, JD, Israelstam, GF 1979A method for the extraction of chlorophyll from leaf tissue without macerationCan J Bot5713321334Google Scholar
  14. 14.
    Hu, X, Boyer, GL 1996Siderophore mediated aluminum uptake by Bacillus megaterium ATCC 19213Appl Environ Microbiol6240444048Google Scholar
  15. 15.
    Imsande, J 1998Iron, sulfur, and chlorophyll deficiencies: A need for an integrative approach in plant physiologyPhysiol Plant103139144CrossRefGoogle Scholar
  16. 16.
    Katiyar, V, Goel, R 2004Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonadPlant Growth Regul42239244CrossRefGoogle Scholar
  17. 17.
    Kloepper, JW, Lifshitz, R, Zablotowicz, RM 1989Free living bacterial inocula for enhancing crop productivityTrends Biotechnol73944CrossRefGoogle Scholar
  18. 18.
    Koeppe, DE 1981 Lead: Understanding the minimal toxicity of lead in plantsLepp, NW eds. Effect of heavy metal pollution on plants, vol 2LondonApplied Science Publishers5576Google Scholar
  19. 19.
    Ma, JF, Nomoto, K 1993Inhibition of mugineic acid–ferric complex in barley by copper, zinc and cobaltPhysiol Plant89331334CrossRefGoogle Scholar
  20. 20.
    Meyer, JM, Abdallah, MA 1978The fluorescent pigment of Pseudomonas fluorescens: Biosynthesis, purification and physiochemical propertiesJ Gen Microbiol107319328Google Scholar
  21. 21.
    Meyer, JM, Geoffroy, V, Baida, N, Gardan, L, Izard, D, Lemanceau, P, Achuak, W, Palleroni, N 2002Siderophore typing, a powerful tool for the identification of fluorescent and non-fluorescent pseudomonadsAppl Environ Microbiol6827452753Google Scholar
  22. 22.
    Mishra, D, Kar, M 1974Nickel in plant growth and metabolismBo Rev40395452Google Scholar
  23. 23.
    Moffat, AS 1999Engineering plants to cope with metalsScience285369370CrossRefPubMedGoogle Scholar
  24. 24.
    Nies, DH 1999Microbial heavy metal resistanceAppl Microbiol Biotechnol51730750CrossRefPubMedGoogle Scholar
  25. 25.
    Nies, DH, Silver, S 1995Ion efflux systems involved in bacterial metal resistanceJ Ind Microbiol14186199CrossRefPubMedGoogle Scholar
  26. 26.
    Nucifora, G, Ghu, L, Mishra, TK, Silver, S 1989Cadmium resistance from Staphylococcus aureus plasmid pI258 CadA gene results from a cadmium efflux ATPaseProc Natl Acad Sci USA8635443548PubMedGoogle Scholar
  27. 27.
    Outten, FW, Outten, CE, O’Halloran, T 2000Metalloregulatory systems at the interface between bacterial metal homeostasis and resistanceStorz, GHengge-Aronis, R eds. Bacterial stress responsesWashington, DCASM Press145157Google Scholar
  28. 28.
    Reid, CP, Szaniszlo, PJ, Crowley, DE 1986Siderophore involvement in plant iron nutritionSwinburne, TR eds. Iron siderophores and plant diseaseNew YorkPlenum Press2942Google Scholar
  29. 29.
    Romheld, V, Marschner, H 1986Mobilization of iron in the rhizosphere of different plant speciesAdv Plant Nutr2155204Google Scholar
  30. 30.
    Sarvari, E Gasper, L CsehKrisztina, K, Varga, A, Baron, M 2002Comparison of the effect of Pd treatment on thylakoid development in poplar and cucumber plants. In: Proceedings of the Seventh Hungarian Congress on Plant PhysiologyActa Biol Szegediensis46163165Google Scholar
  31. 31.
    Schwyn, B, Neiland, JB 1987Universal chemical assay for the detection of siderophoresAnal Biochem1604756CrossRefPubMedGoogle Scholar
  32. 32.
    Sengar, RS, Pandey, M 1996Inhibition of chlorophyll biosynthesis by lead in greening Pisum sativum leaf segmentsBiol Plant38459462Google Scholar
  33. 33.
    Singh, PK, Tewari, RK 2003Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L plants J Environ Biol24107112PubMedGoogle Scholar
  34. 34.
    Somashekariah, BV, Padmaja, K, Prasad, ARK 1992Phytotoxicity of cadmium ion on germinating seeding of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorophyll degradationPhysiol Plant858589CrossRefGoogle Scholar
  35. 35.
    Wallace, A, Wallace, GA, Cha, JW 1992Some modifications in trace element toxicities and deficiencies in plants resulting from interactions with other element and chelating agents: The special case of ironJ Plant Nutr1515891598Google Scholar
  36. 36.
    Wang, Y, Brown, HW, Crowly, DE, Szaniszlo, PJ 1993Evidence for direct utilization of a siderophore, ferroxamine B, in axenically grown cucumberPlant Cell Environ16579585Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Manishi Tripathi
    • 1
  • Hitendra P. Munot
    • 2
  • Yogesh Shouche
    • 2
  • Jean Marie Meyer
    • 3
  • Reeta Goel
    • 1
  1. 1.Department of MicrobiologyCBSH, G.B. Pant University of Agriculture & TechnologyPantnagar-263145India
  2. 2.National Centre for Cell SciencePune University CampusGaneshkhindIndia
  3. 3.Laboratoire de Microbiologie et de GenetiqueCNRS UPRES-A7010, Université Louis-PasteurStrasbourgFrance

Personalised recommendations