Current Microbiology

, Volume 50, Issue 3, pp 151–154 | Cite as

Changes in Fatty Acid Composition of Chromohalobacter israelensis with Varying Salt Concentrations

  • Srikanth Mutnuri
  • N. Vasudevan
  • Matthias Kastner
  • Hermann J. Heipieper
Article

Abstract

The adaptation of fatty acid composition of Chromohalobacter israelensis, a euryhalophilic bacterium, grown at different salt concentrations was studied. C. israelensis tolerated NaCl up to concentrations of 20% (w/v) and showed optimal growth at 7% (w/v). Major fatty acids of this bacterium were palmitic acid (16:0), stearic acid (18:0), palmetoleic acid (16:1cisΔ9), and cis-vaccenic acid (18:1Δ11). The salt concentration strongly influenced the fatty acid composition. In the presence of sub-optimal salt concentrations, the degree of saturation decreased, suggesting the importance of salt in maintaining the osmotic balance of the cell with its environment.

Notes

Acknowledgments

We thank Dr. Marcell Nikolausz, UFZ for the identification of the bacterial strain and the German Academic Exchange Service (DAAD) for providing financial support to Mr. Mutnuri.

Literature Cited

  1. 1.
    Allakhverdiev, SI, Nishiyama, Y, Osuzuki, I, Tasaka, Y, Murata, N 1999Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechococcus to salt stressProc Natl Acad Sci USA9658625867CrossRefPubMedGoogle Scholar
  2. 2.
    Allakhverdiev, SI, Sakamoto, A, Nishiyama, Y, Inaba, M, Murata, N 2000Ionic and osmotic effects of NaCl induced inactivation of photosystem I and II in Synechococcus spPlant Physiol12310471056CrossRefPubMedGoogle Scholar
  3. 3.
    Arahal, DR, Garcia, MT, Ludwig, W, Schleifer, KH, Ventosa, A 2001Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov and Chromohalobacter israelensis comb. novInt J Syst Evol Microbiol5114431448PubMedGoogle Scholar
  4. 4.
    Bligh, EG, Dyer, WJ 1959A rapid method of total lipid extraction and purificationCan J Biochem Physiol37911917PubMedGoogle Scholar
  5. 5.
    Brown, GR, Sutcliffe, IC, Bendell, D, Cummings, SP 2000The modification of the membrane of Oceanomonas baumanii when subjected to both osmotic and organic solvent stressFEMS Microbiol Lett189149154CrossRefPubMedGoogle Scholar
  6. 6.
    Halverson, LJ, Firestone, MK 2000Differential effects of permeating and non-permeating solutes on the fatty acid composition of Pseudomonas putidaAppl Environ Microbiol6624142421CrossRefPubMedGoogle Scholar
  7. 7.
    Heipieper, HJ, Diefenbach, R, Keweloh, H 1992Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol degrading Pseudomonas putida P8 from substrata toxicityAppl Environ Microbiol5818471852PubMedGoogle Scholar
  8. 8.
    Kabelitz, N, Santos, PM, Heipieper, HJ 2003Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoacetiusFEMS Microbiol Lett220223227CrossRefPubMedGoogle Scholar
  9. 9.
    Kushner, DJ 1985

    The Halobacteriaceae

    Woese, CRWolfe, RS eds. The bacteria, vol 8Academic PressOrlando, FL171214
    Google Scholar
  10. 10.
    Marr, AG, Ingraham, JL 1962Effect of temperature on the composition of fatty acids in Escherichia coliJ Bacteriol8412601267Google Scholar
  11. 11.
    Miller, KJ 1986Effects of monovalent and divalent salts on the phospholipid and fatty acid compositions of a halotolerant Planococcus spAppl Environ Microbiol52580582PubMedGoogle Scholar
  12. 12.
    Morrison, WR, Smith, LM 1964Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanolJ Lipid Res5600608Google Scholar
  13. 13.
    Mutnuri, S, Vasudevan, N, Kastner, M 2003

    Biosurfactant production by an extremely halophilic bacterium

    Devi, RAhsan, N eds. Water and wastewater: Perspectives of developingIWAUK761768
    Google Scholar
  14. 14.
    Oren, A 1999Bioenergetic aspects of halophilismMicrobiol Mol Biol Rev63334348PubMedGoogle Scholar
  15. 15.
    Potts, M 1994Desiccation tolerance of prokaryotesMicrobiol Rev58755805PubMedGoogle Scholar
  16. 16.
    Russell, NJ, Kogut, M, Kates, M 1985Phospholipid biosynthesis in the moderately halophilic bacterium Vibrio costicola during adaptation to changing salt concentrationsJ Gen Microbiol131781789Google Scholar
  17. 17.
    Russell, NJ 1989Adaptive modifications in membranes of halotolerant and halophilic microorganismsJ Bioenerg Biomembr2193113CrossRefPubMedGoogle Scholar
  18. 18.
    Singh, SC, Sinha, RP, Hader, DP 2002Role of lipids and fatty acids in stress tolerance in cyanobacteriaActa Protozool41297308Google Scholar
  19. 19.
    Valderrama, MJ, Monteoliva-Sanchez, M, Quesada, E, Ramos-Cormenzana, A 1998Influence of salt concentration on the cellular fatty acid composition of the moderately halophilic bacterium Halomonas salinaRes Microbiol149675679CrossRefPubMedGoogle Scholar
  20. 20.
    Ventosa, A, Nieto, JJ, Oren, A 1998Biology of moderately halophilic aerobic bacteriaMicrobiol Mol Biol Rev62504544PubMedGoogle Scholar
  21. 21.
    Vreeland, RH 1987Mechanisms of halotolerance in microorganismsCrit Rev Microbiol14311356PubMedGoogle Scholar
  22. 22.
    Vreeland, RH, Martin, EL 1980Growth characteristics, effects of temperature and ion specificity of the halotolerant bacterium Halomonas elongataCan J Microbiol26746752Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Srikanth Mutnuri
    • 1
    • 2
  • N. Vasudevan
    • 2
  • Matthias Kastner
    • 1
  • Hermann J. Heipieper
    • 1
  1. 1.Department of BioremediationUFZ-Centre for Environmental ResearchLeipzigGermany
  2. 2.Centre for Environmental StudiesAnna UniversityChennaiIndia

Personalised recommendations