Advertisement

Current Microbiology

, Volume 49, Issue 5, pp 376–380 | Cite as

Fatty Acid Composition of Planktonic Species of Anabaena (Cyanobacteria) with Coiled Trichomes Exhibited a Significant Taxonomic Value

  • Renhui LiEmail author
  • Makoto M. Watanabe
Article

Abstract

Twenty-six axenic strains of planktonic Anabaena with coiled trichomes belonging to 13 species were investigated by analyzing the pattern and content of their fatty acid composition, and by comparing their fatty acid composition with their morphological properties. In general, the planktonic Anabaena with coiled trichomes contained 14:0, 16:0, 16:1(cis-), 18:0, 18:1, 18:2, and 18:3(α) as their major fatty acid component, and were classified as Type 2 according to the Kenyon-Murata System. The Type 2 was further divided into two subtypes: Type 2A with 16:2 and 16:3, and Type 2B without 16:2 and 16:3. Among these Anabaena strains with coiled form, A. oumiana (NIES-73 and Ana Kas1) and A. eucompacta (Ana Chiba) contained Type 2B fatty acid composition, and other strains contained Type 2A. Among the strains with the latter type, A. circinalis (Ana Da) and A. curva (Ana Ao) had low levels of 18:3(α). Most Anabaena strains with coiled trichomes showed a strong correlation between morphological characteristics and fatty acid composition.

Keywords

Fatty Acid Composition Anabaena Nostoc Cellular Fatty Acid Planktonic Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Ms. Sakata in National Institute for Environmental Studies, Japan for her assistance in the measurement of GC-MS. This work was supported by the Japanese Government’s Special Coordination Funds of Science and Technology Agency (STA).

Literature Cited

  1. 1.
    Carmichael, WW 1997The cyanotoxinsAdv Bot Res27211256Google Scholar
  2. 2.
    Caudales, R, Wells, JM 1992Differentiation of the free-living Anabaena and Nostoc cyanobacteria on the basis of fatty acid compositionInt J Syst Bacteriol42246251PubMedGoogle Scholar
  3. 3.
    Caudales, R, Wells, JM, Antoine, AD, Butterfield, JE 1995Fatty acid composition of symbiotic cyanobacteria from different host plant (Azolla) species: evidence for coevolution of host and symbiontInt J Syst Bacteriol45364370Google Scholar
  4. 4.
    Chorus, I 2001Cyanotoxin occurrence in freshwater—a summary of survey results from different countriesChorus, I eds. Cyanotoxins, occurrence, cause, consequencesSpringer-VerlagBerlin, Heidelberg, New York775782Google Scholar
  5. 5.
    Chorus, I, Bartram, J 1999Toxic cyanobacteria in water: a guide to theirublic health consequences, monitoring and managementE & FN SponLondonGoogle Scholar
  6. 6.
    Cohen, Z, Margheri, M, Tomaselli, L 1995Chemotaxonomy of cyanobacteriaPhytochemistry4011551158CrossRefGoogle Scholar
  7. 7.
    Cohen, Z, Vonshak, A 1991Fatty acid composition of Spirulina and Spirulina-like cyanobacteria in relation to their chemotaxonomyPhytochemistry30205206CrossRefGoogle Scholar
  8. 8.
    Gugger, M, Lyra, C, Henriksen, P, Couté, A, Humbert, JF, Sivonen, S 2002Phylogenetic comparison of the cyanobacterial genera Anabaena and AphanizomenonInt J Syst Evol Microbiol5218671880CrossRefPubMedGoogle Scholar
  9. 9.
    Gugger, M, Lyra, C, Suominen, I, Tsitko, I, Humbert, J, Salkinoja-Salonen, MS,  et al. 2002Cellular fatty acids as chemotaxonomic marker of the genera Anabaena, Aphanizomenon, Microcystis, Nostoc and Planktothrix (Cyanobacteria)Int J Syst Evol Microbiol5210071015CrossRefPubMedGoogle Scholar
  10. 10.
    Hickel, B 1982A helical, bloom-forming Anabaena-like blue-green alga (Cyanophyta) from hypertrophic lakesArch Hydrobiol95115124Google Scholar
  11. 11.
    Iteman, I, Rippka, R, Tandeau deMarsac, N, Herdman, M 2002rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and CyanospiraMicrobiology148481496PubMedGoogle Scholar
  12. 12.
    Kenyon, CN 1972Fatty acid composition of unicellular strains of blue-green algaeJ Bacteriol109827834PubMedGoogle Scholar
  13. 13.
    Kenyon, CN, Rippka, R, Stanier, RY 1972Fatty acid composition and physiological properties of some filamentous blue-green algaeArch Mikrobiol83216236PubMedGoogle Scholar
  14. 14.
    Komárek, J, Anagnostidis, K 1989Modern approach to the classification system of cyanophytes. 4. NostocalesArch Hydrobiol Suppl Algological Studies56247345Google Scholar
  15. 15.
    Komárková-Legenrová, J, Eloranta, P 1992Planktonic blue-green algae (Cyanophyta) from central Finland (Jyvaskyla region) with special reference to the genus AnabaenaArch Hydrobiol Suppl 95, Algological Studies67103133Google Scholar
  16. 16.
    Krüger, GHJ, Wet, HD, Kock, JLF, Pieterse, AJH 1995Fatty acid composition as taxonomic characteristic for Microcystis and other coccoid cyanobacteria (blue-green alga) isolatesHydrobiologia308145151Google Scholar
  17. 17.
    Li, R, Yokota, A, Sugiyama, J, Watanabe, M, Watanabe, MM 1998Chemotaxonomy of planktonic cyanobacteria based on nonpolar and 3-hydroxy fatty acid compositionPhycol Res462128Google Scholar
  18. 18.
    Li, R, Watanabe, M, Watanabe, MM 2000Taxonomic studies of planktic species of Anabaena based on morphological characteristics in cultured strainsHydrobiologia438117138CrossRefGoogle Scholar
  19. 19.
    Li, R, Watanabe, MM 1999Anabaena eucompacta sp. nov. (Nostocales, Cyanobacteria), a new planktonic species with tightly spiraled filaments from JapanBull Natn Sci Mus Tokyo Ser B258994CrossRefGoogle Scholar
  20. 20.
    Li, R, Watanabe, MM 2001Fatty acid profile and their chemotaxonomy in planktonic species of Anabaena (Cyanobacteria) with straight trichomesPhytochemistry57727731CrossRefPubMedGoogle Scholar
  21. 21.
    Liu, X, Chen, F, Jiang, Y 2004Differentiation of Nostoc flagelliforme and its neighboring species using fatty acid profile as a chemotaxonomic toolCurr Microbiol47467474Google Scholar
  22. 22.
    Lyra, C, Suomalainen, S, Gugger, M, Vezie, C, Sundman, P, Paulin, L,  et al. 2001Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix generaInt J Syst Evol Microbiol51513526PubMedGoogle Scholar
  23. 23.
    Murata, N, Wada, H, Gombos, Z 1992Modes of fatty-acid desaturation in cyanobacteriaPlant Cell Physiol33933941Google Scholar
  24. 24.
    Palinska, KA, Liesack, W, Rhiel, E, Krumbein, WE 1996Phenotype variability of identical genotypes: the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia-like isolatesArch Microbiol166224233CrossRefPubMedGoogle Scholar
  25. 25.
    Vandamme, P, Pot, B, Gillis, P, Do Vos, P, Kersters, K, Swings, J 1996Polyphasic taxonomy, a consensus approach to bacterial systematicsMicrobiol Rev60407438Google Scholar
  26. 26.
    Walsby, AE 1981Cyanobacteria: planktonic gas-vacuolate formsStar, MPStolp, HTrüper, HGBalows, ASchlegel, HG eds. The prokaryotes, vol. 1Springer-VerlagBerlin, Heidelberg, New York224235Google Scholar
  27. 27.
    Watanabe, M 1992Studies on planktonic blue-green algae 4. Some Anabaena species with straight trichomes in JapanBull Natn Sci Mus Tokyo ser B18123137Google Scholar
  28. 28.
    Watanabe, MM, Hiroki, M 1997NIES-Collection. List of strains, algae and protozoa, 5th ed. National Institute for Environmental Studies5Environment AgencyJapanGoogle Scholar
  29. 29.
    Welch, DF 1991Application of cellular fatty acid analysisClin Microbiol Rev4422438PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  1. 1.National Institute for Environmental StudiesTsukubaJapan
  2. 2.Department of MicrobiologyUniversity of TennesseeKnoxvilleUSA

Personalised recommendations