Advertisement

Current Microbiology

, Volume 49, Issue 6, pp 415–422 | Cite as

Isolation and Characterization of Novel Strains of Pseudomonas aeruginosa and Serratia marcescens Possessing High Efficiency to Degrade Gasoline, Kerosene, Diesel Oil, and Lubricating Oil

  • Patcharaporn Wongsa
  • Makiko Tanaka
  • Akio Ueno
  • Mohammad Hasanuzzaman
  • Isao Yumoto
  • Hidetoshi Okuyama
Article

Abstract

Bacteria possessing high capacity to degrade gasoline, kerosene, diesel oil, and lubricating oil were screened from several areas of Hokkaido, Japan. Among isolates, two strains, WatG and HokM, which were identified as new strains of Pseudomonas aeruginosa and Serratia marcescens species, respectively, showed relatively high capacity and wide spectrum to degrade the hydrocarbons in gasoline, kerosene, diesel, and lubricating oil. About 90–95% of excess amount of total diesel oil and kerosene added to mineral salts media as a sole carbon source could be degraded by WatG within 2 and 3 weeks, respectively. The same amount of lubricating oil was 60% degraded within 2 weeks. Strain HokM was more capable than WatG in degrading aromatic compounds in gasoline. This strain could also degrade kerosene, diesel, and lubricating oil with a capacity of 50–60%. Thus, these two isolates have potential to be useful for bioremediation of sites highly contaminated with petroleum hydrocarbons.

Keywords

Kerosene Petroleum Product Petroleum Hydrocarbon Mineral Salt Medium Serratia Marcescens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially supported by Northern Advancement Center for Science & Technology.

Literature cited

  1. 1.
    Banat, IM, Makkar, RS, Cameotra, SS 2000Potential commercial applications of microbial surfactantsAppl Microbiol Biotechnol53495508CrossRefPubMedGoogle Scholar
  2. 2.
    Bartha, R 1986Biotechnology of petroleum pollutant biodegradationMicrobial Ecol12155172Google Scholar
  3. 3.
    Bouchez-Naïtali, M, Blanchet, D, Bardin, V, Vandecasteele, J 2001Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: the importance of cell flocculationMicrobiology14725372543PubMedGoogle Scholar
  4. 4.
    Boulton, CA, Ratledge, C 1984The physiology of hydrocarbon utilizing microorganismsWiseman, A eds. Enzyme and fermentation biotechnologyWileyNew York1177Google Scholar
  5. 5.
    Brosius, J, Palmer, JL, Kennedy, JP, Noller, HF 1978Complete nucleotide sequence of a 16S ribosomal gene from Escherichia coliProc Natl Acad Sci USA7548014805PubMedGoogle Scholar
  6. 6.
    Dejonghe, W, Boon, N, Seghers, D, Top, EM, Verstraete, W 2001Bioaugmentation of soils by increasing microbial richness: missing linksEnviron Microbiol3649657CrossRefPubMedGoogle Scholar
  7. 7.
    la Fuente, G, Perestelo, F, Rodriguez Perez, A, Falcon, MA 1991Oxidation of aromatic aldehides by Serratia marcescensAppl Environ Microbiol5712751276PubMedGoogle Scholar
  8. 8.
    Ezaki, T, Hashimoto, Y, Yabuuchi, E 1989Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strainsInt J Syst Bacteriol39224229Google Scholar
  9. 9.
    Gallego, JLR, Loredo, J, Llamas, JF, Vázquez, F, Sánchez, J 2001Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradationBiodegradation12325335CrossRefPubMedGoogle Scholar
  10. 10.
    Hommel, RK 1994Formation and functions of biosurfactants for degradation of water-insoluble substratesRatledge, C eds. Biochemistry of microbial biodegradationKluwerDordrecht6387Google Scholar
  11. 11.
    Iwabuchi, N, Sunairi, M, Urai, M, Itoh, C, Anzai, H, Nakajima, M, Harayama, S 2002Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteriaAppl Environ Microbiol6823372343CrossRefPubMedGoogle Scholar
  12. 12.
    Kimura, M 1980A simple method for estimating evolutionary rates base substitution through comparative studies of nucleotide sequencesJ Mol Evol16111120PubMedGoogle Scholar
  13. 13.
    Lang, S, Wullbrandt, D 1999Rhamnose lipids-biosynthesis, microbial production and application potentialAppl Microbiol Biotechnol512232CrossRefPubMedGoogle Scholar
  14. 14.
    Leahy, JG, Colwell, RR 1990Microbial degradation of hydrocarbons in the environmentMicrobiol Rev54305315PubMedGoogle Scholar
  15. 15.
    Margesin, R, Schinner, F 2001Biodegradation and bioremediation of hydrocarbons in extreme environmentsAppl Microbiol Biotechnol56650663CrossRefPubMedGoogle Scholar
  16. 16.
    Marmur, J 1961A procedure for the isolation of deoxyribonucleic acid from microorganismsJ Mol Biol3208218Google Scholar
  17. 17.
    Rojas-Avelizapa, NG, Cervantes-Gonzalez, E, Cruz-Camarillo, R, Rojas-Avelizapa, LI 2002Degradation of aromatic and asphaltenic fractions by Serratia liquefasciens and Bacillus spBull Environ Contam Toxicol69835842CrossRefPubMedGoogle Scholar
  18. 18.
    Saitou, N, Nei, M 1987The neighbor-joining method: a new method for reconstructing phylogenetic treeMol Biol Evol4406425PubMedGoogle Scholar
  19. 19.
    Seklemova, E, Pavlova, A, Kovacheva, K 2001Biostimulation-based bioremediation of diesel fuel: field demonstrationBiodegradation12311316CrossRefPubMedGoogle Scholar
  20. 20.
    Solomons, TWG 1990Alkanes and cycloalkanes conformation analysisSolomons, TWG eds. Fundamentals of organic chemistry3John Wiley & Sons IncNew York93143Google Scholar
  21. 21.
    Tamaoka, J, Komagata, K 1984Determination of base composition by reversed-phase high-performance liquid chromatographyFEMS Microbiol Lett25125128CrossRefGoogle Scholar
  22. 22.
    Thomassin-Lacroix, EJM, Eriksson, M, Reimer, K, Mohn, WW 2002Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soilAppl Microbiol Biotechnol59551556CrossRefPubMedGoogle Scholar
  23. 23.
    Thompson, JD, Higgins, DG, Gibson, TJ 1994CLUSTAL W: improving the sensitivity of progressive multiple sequence weighing, position-specific gap penalties and weight matrix choiceNucleic Acids Res2246734680PubMedGoogle Scholar
  24. 24.
    Tzing, SH, Chang, JY, Ghule, A, Chang, JJ, Lo, B, Ling, YC 2003A simple and rapid method for identifying the source of spilled oil using an electronic nose: confirmation by gas chromatography with mass spectrometryRapid Commun Mass Spectrom1718731880CrossRefPubMedGoogle Scholar
  25. 25.
    Vogel, TM 1996Bioaugmentation as a soil bioremediation approachCurr Opin Biotechnol7311316CrossRefPubMedGoogle Scholar
  26. 26.
    Yumoto, I, Kusano, T, Shingyo, T, Nodasaka, Y, Matsuyama, H, Okuyama, H 2001Assignment of Pseudomonas sp. strain E-3 to Pseudomonas psychrophila sp. nov., a new facultatively psychrophilic bacteriumExtremophiles5343349CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Inc. 2004

Authors and Affiliations

  • Patcharaporn Wongsa
    • 1
    • 2
  • Makiko Tanaka
    • 1
    • 3
  • Akio Ueno
    • 1
    • 2
  • Mohammad Hasanuzzaman
    • 1
    • 2
  • Isao Yumoto
    • 3
  • Hidetoshi Okuyama
    • 2
  1. 1.ROM Co. Ltd.Chuo-kuJapan
  2. 2.Laboratory of Environmental Molecular Biology, Graduate School of Environmental Earth ScienceHokkaido UniversityKita-kuJapan
  3. 3.Institute for Biological Resource and FunctionNational Institute of Advanced Industrial Science and TechnologyToyohira-kuJapan

Personalised recommendations