Advertisement

The Mathematical Intelligencer

, Volume 41, Issue 4, pp 29–34 | Cite as

A Relationship between the Tractrix and Logarithmic Curves with Mechanical Applications

  • Davide Crippa
  • Pietro MiliciEmail author
Article
The “problem of exactness” consists in determining, in different historical periods, the canons of constructions deemed appropriate for mathematical problem-solving. This problem was explicitly posed, perhaps for the first time, in Descartes’s Géométrie (1637). In that work, Descartes deployed a set of criteria for deciding which curves should be accepted in geometry beyond circles and line segments. On the one hand, he presented an instrumental criterion [ 7, vol. 6, pp. 391, 393] that depended on a veritable theory of instruments for the tracing of curves. Such instruments (we may refer to them as “coordinated continuous motions” [ 4, p. 336] or “geometrical linkages” [ 11, p. 79]) were conceived as ideal machines, formed by configurations of interconnected segments, that trace curves via a unique and continuous motion in the plane, impervious to physical limitations such as velocity and friction (see Figure  1).

Notes

References

  1. [1]
    B. Abdank-Abakanowicz. Die Integraphen: Die Integralkurven und ihre Anwendung. Leipzig: Teubner, 1889.Google Scholar
  2. [2]
    V. Blasjo. The myth of Leibniz’s proof of the fundamental theorem of calculus. Nieuw archief voor wiskunde, Serie 5, 16:1 (2015), 46–50.Google Scholar
  3. [3]
    V. Blasjo. Transcendental Curves in the Leibnizian Calculus. Academic Press, 2017.Google Scholar
  4. [4]
    H. J. Bos. Redefining Geometrical Exactness: Descartes’ Transformation of the Early Modern Concept of Construction. Springer Science & Business Media, 2001.Google Scholar
  5. [5]
    H. J. Bos. (1988). Tractional motion and the legitimation of transcendental curves. Centaurus 31, 9–62.Google Scholar
  6. [6]
    G. Capobianco, M. R. Enea, and G. Ferraro. Geometry and analysis in Euler’s integral calculus. Archive for History of Exact Sciences 71:1 (2017), 1–38.Google Scholar
  7. [7]
    R. Descartes. Oeuvres de Descartes, edited by Charles Adam and Paul Tannery. 12 vols. Paris: Cerf, 1897–1913.Google Scholar
  8. [8]
    G. W. Leibniz. Supplementum geometriae dimensoriae, seu generalissima omnium tetragonismorum effectio per motum: similiterque multiplex constructio lineae ex data tangentium conditione. Acta Eruditorum anno MDCXCIII publicata, mensis Septembris, 1693, pp. 385–392. Also in G. W. Leibniz. Mathematische Schriften, vol. V, edited by C. I. Gerhardt and H. W. Schmidt. Halle, 1858. Reprint: Olms, Hildesheim, 1962, pp. 294–301.Google Scholar
  9. [9]
    P. Milici. Tractional motion machines extend GPAC-generable functions. International Journal of Unconventional Computing 8:3 (2012), 221–233.Google Scholar
  10. [10]
    P. Milici. A geometrical constructive approach to infinitesimal analysis: epistemological potential and boundaries of tractional motion. In From Logic to Practice, pp. 3–21. Springer, 2015.Google Scholar
  11. [11]
    M. Panza. Rethinking geometrical exactness. Historia Mathematica 38 (2011), 42–95.Google Scholar
  12. [12]
    J. Perks. The construction and properties of a new quadratrix to the hyperbola. Philosophical Transactions of the Royal Society of London 25 (1706), 2253–2262.Google Scholar
  13. [13]
    J. Perks. An easy mechanical way to divide the nautical meridian line in Mercator’s projection, with an account of the relation of the same meridian line to the curva catenaria. Philosophical Transactions of the Royal Society of London 29 (1714–1716), 331–339.Google Scholar
  14. [14]
    G. Poleni. Epistolarum mathematicarum fasciculus, Patavii: typis Seminarii, 1729.Google Scholar
  15. [15]
    G. Suardi. Nuovi istromenti per la descrizione di diverse curve antiche e moderne e di molto altre, che servir possono alla speculazione de’ geometri, ed all’uso de’ pratici, Brescia: Rizzardi, 1752.Google Scholar
  16. [16]
    D. Tournès. La construction tractionnelle des équations différentielles, Paris: Blanchard, 2009.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université de Bretagne Occidentale CECJIBrestFrance
  2. 2.Czech Academy of Sciences Institute of PhilosophyPragueCzech Republic

Personalised recommendations