Advertisement

Probability and Kinetic Theory: A Tale of Two Disciplines

  • Prakash GorroochurnEmail author
Viewpoint
  • 33 Downloads

Although the utility and universality of probability and statistics can hardly be questioned nowadays, this was not the case in the nineteenth century and before. This is in spite of the fact that the early nineteenth century saw probability elevated to unprecedented heights single-handedly by Pierre-Simon Laplace (1749–1827). Initiating his research on probabilities in the late eighteenth century, Laplace published his monumental Théorie Analytique des Probabilités in 1812 [49], which Augustus De Morgan rightly described as “the Mont Blanc of mathematical analysis” [29, p. 347]. The Théorie Analytique literally unleashed the power of probability, infusing into the latter the tools of the differential and integral calculus and the technique of generating functions. Using these powerful analytical tools, Laplace was able to steer the calculus of probability into fields as varied as astronomy, the theory of errors, demography, sociology, insurance, and jurisprudence.

Laplace’s program,...

Notes

References

  1. 1.
    Bayes, T., An essay towards solving a problem in the doctrine of chances. Phil. Trans. R Soc. Lond., 1764. 53: pp. 370–418 (Reprinted in Studies in the History of Statistics and Probability (Vol. I) 1970, edited by E.S. Pearson & M.G. Kendall. Griffin, London, pp. 134–153).Google Scholar
  2. 2.
    Bernoulli, J., Ars Conjectandi. 1713, Basel (Translated as The Art of Conjecturing, together with Letter to a Friend on Sets in Court Tennis by E. Dudley Sylla (2006). Published by Johns Hopkins University Press): Brothers Thurneisen.Google Scholar
  3. 3.
    Boltzmann, L., Über die mechanische Bedeutung des zweiten Hauptsatzes der Wärmetheorie. Wiener Berichte, 1866. 53: pp. 195–220.Google Scholar
  4. 4.
    Boltzmann, L., Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Wiener Berichte, 1872. 66: pp. 275–370.zbMATHGoogle Scholar
  5. 5.
    Boltzmann, L., Über die Beziehung dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht. Wiener Berichte, 1877. 76: pp. 373–435.zbMATHGoogle Scholar
  6. 6.
    Boltzmann, L., Further Studies on the Thermal Equilibrium of Gas Molecules, in The Kinetic Theory of Gases: An Anthology of Classic Papers with Historical Commentary, S.G. Brush, editor. 2003, World Scientific. pp. 262–349.Google Scholar
  7. 7.
    Brush, S.G., The Kind of Motion We Call Heat. A History of the Kinetic Theory of Gases in the 19th Century. Book 2: Statistical Physics and Irreversible Processes. 1976, Amsterdam: North-Holland.Google Scholar
  8. 8.
    Čápek, V. and D.P. Sheehan, Challenges to the Second Law of Thermodynamics. 2005, Dordrecht: Springer.zbMATHGoogle Scholar
  9. 9.
    Cardano, G., Liber de Ludo Aleae (in Opera Omnia, Vol. 1, pp. 262–276). 1663.Google Scholar
  10. 10.
    Carnot, S., Réflexions sur la puissance motrice du feu et sur les machines propres et développer cette puissance. 1824, Paris: Bachelier.zbMATHGoogle Scholar
  11. 11.
    Chrystal, G., Algebra: An Elementary Text-Book for the Higher Classes of Secondary Schools and for Colleges (Part II). 1889, Edinburgh: Adam and Charles Black.zbMATHGoogle Scholar
  12. 12.
    Clausius, R., Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Annalen der Physik, 1850. 155(3): pp. 368–397 (contd. in 155 (4): 500–524).Google Scholar
  13. 13.
    Clausius, R., Über eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheorie. Annalen der Physik, 1854. 169(12): pp. 481–506.CrossRefGoogle Scholar
  14. 14.
    Clausius, R., Ueber die Art der Bewegung, welche wir Wärme nennen. Annalen der Physik, 1857. 176(3): pp. 353–380.CrossRefGoogle Scholar
  15. 15.
    Clausius, R., Ueber die mittlere Länge der Wege, welche bei der Molecularbewegung gasförmiger Körper von den einzelnen Molecülen zurückgelegt werden, nebst einigen anderen Bemerkungen über die mechanische Wärmetheorie. Annalen der Physik, 1858. 181(10): pp. 239–258.CrossRefGoogle Scholar
  16. 16.
    Clausius, R., Ueber die Anwendung des Satzes von der Aequivalenz der Verwandlungen auf die innere Arbeit. Annalen der Physik, 1862. 192(5): pp. 73–112.CrossRefGoogle Scholar
  17. 17.
    Clausius, R., Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Annalen der Physik, 1865. 201(7): pp. 353–400.CrossRefGoogle Scholar
  18. 18.
    Clausius, R., On a modified form of the second fundamental theorem in the mechanical theory of heat, in The Mechanical Theory of Heat: With Its Applications to the Steam-Engine and to the Physical Properties of Bodies, T.A. Hirst, editor. 1867, J. van Voorst: London. pp. 111–135.Google Scholar
  19. 19.
    Clausius, R., On several convenient forms of the fundamental equations of the mechanical theory of heat, in The Mechanical Theory of Heat: With Its Applications to the Steam-Engine and to the Physical Properties of Bodies, T.A. Hirst, editor. 1867, J. van Voorst: London. pp. 327–365.Google Scholar
  20. 20.
    Clausius, R., On the application of the theorem of the Equivalence of Transformations to the internal work of a mass of matter, in The Mechanical Theory of Heat: With Its Applications to the Steam-Engine and to the Physical Properties of Bodies, T.A. Hirst, editor. 1867, J. van Voorst: London. pp. 215–250.Google Scholar
  21. 21.
    Clausius, R., On the moving force of heat, and the law regarding the nature of heat itself which are deducible therefrom, in The Mechanical Theory of Heat: With Its Applications to the Steam-Engine and to the Physical Properties of Bodies, T.A. Hirst, editor. 1867, J. van Voorst: London. pp. 14–69.Google Scholar
  22. 22.
    Clausius, R., The Nature of the Motion Which We Call Heat, in The Kinetic Theory of Gases: An Anthology of Classic Papers with Historical Commentary, S.G. Brush, editor. 2003, World Scientific. pp. 111–134.Google Scholar
  23. 23.
    Clausius, R., On the mean lengths of the paths described by the separate molecules of gaseous bodies, in The Kinetic Theory Of Gases: An Anthology of Classic Papers with Historical Commentary, S.G. Brush, editor. 2003, World Scientific. pp. 135–147.Google Scholar
  24. 24.
    Cohen, I.B., Revolution in Science. 1985, Cambridge, MA: Harvard University Press.Google Scholar
  25. 25.
    Comte, A., Plan des travaux scientifiques nécessaires pour réorganiser la société. 1822, Reproduced in Comte, A. (1854): Système de Politique Positive, Tome Quatrième et dernier, Carilian-Goeury et Vor Dalmont, Paris, pp. 47–136.Google Scholar
  26. 26.
    Coumet, E., Auguste Comte. Le calcul des chances, aberration radicale de l’esprit mathématique. Math.& Sci. Hum., 2003. 162: pp. 9–17.Google Scholar
  27. 27.
    d’Alembert, J.L.R., Mélanges de Littérature, d’Histoire et de Philosophie (Tome V). 1767, Amsterdam: Zacharie Chatelain & Fils.Google Scholar
  28. 28.
    Daston, L.J., D’Alembert critique of probability theory. Historia Mathematica, 1979. 6: pp. 259–279.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    De Morgan, A., Review of Laplace’s Théorie Analytique des Probabilités (3rd edition). Dublin Review, 1837. 2: pp. 338–354 and 3: 237–248.Google Scholar
  30. 30.
    Ellis, R.L., Remarks on an alleged proof of the “Method of Least Squares,” contained in a late number of the Edinburgh Review. Philsos. Mag. [3] (Reprinted in The Mathematical and Other Writings of Robert Leslie Ellis. Cambridge University Press, Cambridge, 1863), 1850. 37: pp. 321–328.Google Scholar
  31. 31.
    Everitt, C.W.F., Maxwell, James Clerk, in Dictionary of Scientific Biography (Vol. 9), C.C. Gillispie, editor. 1974, Charles Scribner’s Sons: New York. pp. 198–230.Google Scholar
  32. 32.
    Gorroochurn, P., Classic Problems of Probability. 2012, Hoboken, NJ: Wiley.Google Scholar
  33. 33.
    Gorroochurn, P., Some laws and problems of classical probability and how Cardano anticipated them. CHANCE, 2012. 25(4): pp. 13–20.CrossRefGoogle Scholar
  34. 34.
    Gorroochurn, P., Classic Topics on the History of Modern Mathematical Statistics: From Laplace to Modern Recent Times. 2016, Hoboken, NJ: Wiley.Google Scholar
  35. 35.
    Gouraud, C., Histoire du Calcul des Probabilités Depuis ses Origines Jusqu’à nos Jours. 1848, Paris: Librairie D’Auguste Durand.Google Scholar
  36. 36.
    Harman, P.M., ed. The Scientific Letters and Papers of James Clerk Maxwell: 1846–1862 (Volume I). 1990, Cambridge University Press: Cambridge.Google Scholar
  37. 37.
    Herschel, J.F.W., Quetelet on probabilities. Edin. Rev., 1850. 92: pp. 1–57.Google Scholar
  38. 38.
    Huygens, C., De Ratiociniis in Ludo Aleae. 1657, Leiden (pp. 517-–534 in Frans van Schooten’s Exercitationum mathematicarum liber primus continens propositionum arithmeticarum et geometricarum centuriam): Johannis Elsevirii.Google Scholar
  39. 39.
    Joule, J.P. and W. Thomson, On the thermal effects of fluids in motion. Part II. Philosophical Transactions of the Royal Society of London, 1854. 144: pp. 321–364.Google Scholar
  40. 40.
    Kamlah, A., The Decline of the Laplacian Theory of Probability, in The Probabilistic Revolution (Vol. 1), L. Krüger, L.J. Daston, and M. Heidelberger, editors. 1987, MIT Press: Cambridge, MA. pp. 91–116.Google Scholar
  41. 41.
    Laplace, P.-S., Mémoire sur la probabilité des causes par les événements. Mémoire de l’Académie Royale des Sciences de Paris (savants étrangers), 1774. 6: pp. 621–656 (OC 8, 27–65).Google Scholar
  42. 42.
    Laplace, P.-S., Mémoire sur les suites récurro-récurrentes et sur leurs usages dans la théorie des hasards. Mémoire de l’Académie Royale des Sciences de Paris (savants étrangers), 1774. 6: pp. 353–371 (OC 8, 5–24).Google Scholar
  43. 43.
    Laplace, P.-S., Mémoire sur l’inclinaison moyenne des orbites des comètes, sur la figure de la terre, et sur les fonctions. Mémoire de l’Académie Royale des Sciences de Paris (savants étrangers), 1776. 7: pp. 503–540 (1773) (OC 8, 279–321).Google Scholar
  44. 44.
    Laplace, P.-S., Mémoire sur les approximations des formules qui sont fonctions de très grands nombres. Mémoire de l’Académie Royale des Sciences, 1785: pp. 1–88 (1782) (OC 10, 209–291).Google Scholar
  45. 45.
    Laplace, P.-S., Mémoire sur les approximations des formules qui sont fonctions de très grands nombres (Suite). Mémoire de l’Académie Royale des Sciences, 1786: pp. 423–467 (1783) (OC 10, 295–338).Google Scholar
  46. 46.
    Laplace, P.-S., Mémoire sur les approximations des formules qui sont fonctions de très grands nombres et sur leur application aux probabilités. Mémoire de l’Académie Royale des Sciences de Paris, 1810: pp. 353–415 (OC 12, 301–345).Google Scholar
  47. 47.
    Laplace, P.-S., Supplément au mémoire sur les approximations des formules qui sont fonctions de très grands nombres et sur leur application aux probabilités. Mémoire de l’Académie des Sciences, 1810: pp. 559–565 (OC 12, 349–353).Google Scholar
  48. 48.
    Laplace, P.-S., Mémoire sur les intégrales définies et leur application aux probabilités, et spécialement à la recherche du milieu qu’il faut choisir entre les résultats des observations. Mém. Acad. Sci. Paris, 1811. 11: pp. 279–347 (OC 12, 357–412).Google Scholar
  49. 49.
    Laplace, P.-S., Théorie Analytique des Probabilités. 1812, Paris: Courcier.zbMATHGoogle Scholar
  50. 50.
    Laplace, P.-S., Essai Philosophique sur les Probabilités. 1814, Paris (Sixth edition translated by F.W. Truscott and F.L. Emory as A Philosophical Essay on Probabilities, 1902. Reprinted in 1951 by Dover, New York): Courcier.Google Scholar
  51. 51.
    Lottin, J., Quetelet, Statisticien et Sociologue. 1912, Paris: Félix Alcan.Google Scholar
  52. 52.
    Maxwell, J.C., Illustrations of the dynamical theory of gases. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1860. 19: pp. 19–32 (contd. in Vol. 20, pp. 21–37).Google Scholar
  53. 53.
    Maxwell, J.C., On the dynamical theory of gases. Philosophical Transactions of the Royal Society of London, 1867. 157: pp. 49–88.CrossRefGoogle Scholar
  54. 54.
    Maxwell, J.C., Illustrations of the dynamical theory of gases, in The Kinetic Theory Of Gases: An Anthology of Classic Papers with Historical Commentary, S.G. Brush, Editor. 2003, World Scientific. pp. 148–171.Google Scholar
  55. 55.
    Maxwell, J.C., On the dynamical theory of gases, in The Kinetic Theory Of Gases: An Anthology of Classic Papers with Historical Commentary, S.G. Brush, Editor. 2003, World Scientific. pp. 197–261.Google Scholar
  56. 56.
    Mill, J.S., A System of Logic, Ratiocinative and Inductive: Being a Connected View of the Principles of Evidence and the Methods of Scientific Investigation. 1859, New York: Harper & brothers.Google Scholar
  57. 57.
    Montmort, P.R. de, Essay d’Analyse sur les Jeux de Hazard. 1708, Paris: Quillau.Google Scholar
  58. 58.
    Müller, I., A History of Thermodynamics: The Doctrine of Energy and Entropy. 2007, Berlin: Springer.zbMATHGoogle Scholar
  59. 59.
    Niven, W.D., ed. The Scientific Papers of James Clerk Maxwell. 1965, Dover: New York.Google Scholar
  60. 60.
    Ore, Ø., Cardano, the Gambling Scholar. 1953: Princeton University Press.Google Scholar
  61. 61.
    Pacioli, L., Summa de arithmetica, geometrica, proportioni, et proportionalita. 1494, Venice.Google Scholar
  62. 62.
    Paty, M., D’Alembert et les probabilités, in Sciences à l’Époque de la Révolution Française. Recherches Historiques, R. Rashed, editor. 1988, Blanchard: Paris.Google Scholar
  63. 63.
    Poisson, S.D., Recherches sur la Probabilité des Jugements en Matière Criminelle et Matière Civile. 1837, Paris: Bachelier.Google Scholar
  64. 64.
    Quetelet, A., Lettres à S.A.R. le Duc régnant de Saxe-Cobourg et Gotha, sur la théorie des probabilités, appliquée aux sciences morales et politiques. 1846, Bruxelles: Hayez.Google Scholar
  65. 65.
    Sharp, K. and F. Matschinsky, Translation of Ludwig Boltzmanns Paper “On the Relationship between the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for Thermal Equilibrium” Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe. Abt. II, LXXVI 1877, pp. 37–435 (Wien. Ber. 1877, 76: 373–435). Reprinted in Wiss. Abhandlungen, Vol. II, reprint 42, pp. 164–223, Barth, Leipzig, 1909. Entropy, 2015. 17(4): pp. 1971–2009.Google Scholar
  66. 66.
    Thomson, W., XXXVI. Account of Carnot’s Theory of the Motive Power of Heat; with Numerical Results deduced from Regnault’s Experiments on Steam. Transactions of the Royal Society of Edinburgh, 1849. 16(5): pp. 541–574.Google Scholar
  67. 67.
    Venn, J., The Logic of Chance. 1866, London: Macmillan.zbMATHGoogle Scholar
  68. 68.
    Zabell, S.L., Symmetry and Its Discontents. 2005, Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  69. 69.
    Zenzen, M. and H. Hollinger, The Nature of Irreversibility. 1985, Dordrecht: Reidel.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiostatisticsColumbia UniversityNew YorkUSA

Personalised recommendations