The Mathematical Intelligencer

, Volume 40, Issue 2, pp 33–37 | Cite as

Modified Equations and the Basel Problem

  • Mats Vermeeren


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author is grateful to the numerous people who gave constructive criticism on some draft of this work, in particular Yuri Suris and the anonymous referees. The author is supported by the DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics.”


  1. Martin Aigner and Günter M. Ziegler. Proofs from THE BOOK. 5th edition, Springer, Berlin, 2014.Google Scholar
  2. Jonathan M. Borwein and Peter B. Borwein. Pi and the AGM. Wiley, New York, 1987.Google Scholar
  3. Robin Chapman. Evaluating \(\zeta (2)\). Preprint,, 1999.
  4. William Dunham. Euler: The Master of Us All. The Mathematical Association of America, Washington, 1999.Google Scholar
  5. Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric Numerical Integration Illustrated by the Störmer-Verlet Method. Acta Numerica, 12(12):399–450, 2003.Google Scholar
  6. Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin, 2006.Google Scholar
  7. Ishtiaq Rasool Khan, Ryoji Ohba, and Noriyuki Hozumi. Mathematical Proof of Closed Form Expressions for Finite Difference Approximations Based on Taylor Series. J. Comput. Appl. Math., 150(2):303–309, 2003.Google Scholar
  8. Konrad Knopp. Theory and Application of Infinite Series. Blackie & Son Limited, London, 1954.Google Scholar
  9. Mats Vermeeren. Modified Equations for Variational Integrators. Numer. Math., 137(4):1001–1037, 2017.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Institut für MathematikBerlinGermany

Personalised recommendations