The Mathematical Intelligencer

, Volume 39, Issue 2, pp 15–26 | Cite as

Straight Lines on Models of Curved Surfaces

  • Oliver LabsEmail author


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. F. Apery. Caron’s Wooden Mathematical Objects. Available from:’s_ wooden_mathematical_objects.pdf, 2013.
  2. A. Clebsch. Die Geometrie auf den Flächen dritter Ordnung. Journal für die reine und angewandte Mathematik (auch Crelles Journal bzw. Borchardts Journal genannt), LXV:359–380, 1866.Google Scholar
  3. A. Coble. Point Sets and Allied Cremona Groups. Transactions of the American Mathematical Society, XVI:155–198, 1915.Google Scholar
  4. J. Coolidge. A History of the Conic Sections and Quadric Surfaces. Clarendon Press, Oxford, 1945.zbMATHGoogle Scholar
  5. J. H. Graf. Der Briefwechsel zwischen Jakob Steiner und Ludwig Schläfli. K. J. Wyss, 1896.zbMATHGoogle Scholar
  6. A. Henderson. The Twenty-Seven Lines upon the Cubic Surface. Hafner Publishing Co., 1911.Google Scholar
  7. C. Jordan. Traité des Substitutions et des Equations Algébriques. Gaultiers-Villars, Paris, 1870.zbMATHGoogle Scholar
  8. O. Labs and D. van Straten. A Visual Introduction to Cubic Surfaces Using the Computer Software Spicy. In M. Joswig and N. Takayama, editors, Algebra, Geometry, and Software Systems, pages 225–238. Springer, 2003.Google Scholar
  9. F. Lê. Around the History of the 27 Lines upon Cubic Surfaces: Uses and Non-Uses of Models. In OWR 47/2015, pages 2794–2797. Mathematisches Forschungsinstitut Oberwolfach, 2015.Google Scholar
  10. L. Schläfli. On the Distribution of Surfaces of the Third Order into Species, in Reference to the Presence or Absence of Singular Points and the Reality of their Lines. Philos. Trans. Royal Soc., CLIII:193–241, 1863.Google Scholar
  11. L. Schläfli. Gesammelte Mathematische Abhandlungen, volume II. Verlag Birkhäuser, Basel, 1953.CrossRefzbMATHGoogle Scholar
  12. L. Schläfli. An Attempt to Determine the Twenty-Seven Lines upon a Surface of the Third Order, and to Divide such Surfaces into Species in Reference to the Reality of the Lines upon the Surface. Quarterly Journal for Pure and Applied Mathematics, II:55–66, 110–220, 1858. (also in: Shläfli (1953): S. 198–218).Google Scholar
  13. C. Wiener. Stereoscopische Photographien des Modells einer Fläche dritter Ordnung mit 27 reellen Geraden. Mit erläuterndem Texte. Teubner, Leipzig, 1869.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.MO-Labs, Math Objects-On Oliver LabsIngelheimGermany

Personalised recommendations