The Mathematical Intelligencer

, Volume 37, Issue 4, pp 48–51 | Cite as

Euler’s Lute and Edwards’s Oud

  • Vladimir Kanovei
  • Karin U. Katz
  • Mikhail G. Katz
  • David Sherry


Elliptic Curf Mathematical Intelligencer Differential Calculus Exact Science Constructive Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work of Vladimir Kanovei was partially supported by the Russian Scientific Fund (project no. 14-50-00150) and RFBR grant 13-01-00006. M. Katz was partially funded by the Israel Science Foundation grant no. 1517/12. The influence of Hilton Kramer (1928–2012) is obvious.


  1. [Bascelli et al. 2014] Bascelli, T., Bottazzi, E., Herzberg, F., Kanovei, V., Katz, K., Katz, M., Nowik, T., Sherry, D., Shnider, S. “Fermat, Leibniz, Euler, and the Gang: The True History of the Concepts of Limit and Shadow.” Notices of the American Mathematical Society 61, no. 8, 848–864.Google Scholar
  2. [Borovik & Katz 2012] Borovik, A., Katz, M. “Who Gave You the Cauchy—Weierstrass Tale? The Dual History of Rigorous Calculus.” Foundations of Science 17, no. 3, 245–276. See http:// and abs/1108.2885.
  3. [Bos 1974] Bos, H. “Differentials, Higher-Order Differentials and the Derivative in the Leibnizian Calculus.” Archive for History of Exact Sciences 14, 1–90.Google Scholar
  4. [Edwards 1981] Edwards, H. “Read the Masters!” In Mathematics Tomorrow, Lynn Arthur Steen, ed., Springer-Verlag, New York-Berlin, pp. 105–110.Google Scholar
  5. [Edwards 2005] Edwards, H. Essays in Constructive Mathematics. Springer-Verlag, New York.Google Scholar
  6. [Edwards 2007a] Edwards, H. “A Normal Form for Elliptic Curves.” Bull. Amer. Math. Soc. (N.S.) 44, no. 3, 393–422.Google Scholar
  7. [Edwards 2007b] Edwards, H. “Euler’s Definition of the Derivative.” Bull. Amer. Math. Soc. (N.S.) 44, no. 4, 575–580.Google Scholar
  8. [Euler 1748] Euler, L. Introductio in Analysin Infinitorum, Tomus primus. SPb and Lausana.Google Scholar
  9. [Euler 1755] Euler, L. Institutiones Calculi Differentialis. SPb.Google Scholar
  10. [Euler 2000] Euler, L. Foundations of Differential Calculus. English translation of Chapters 1–9 of [Euler 1755] by J. Blanton, Springer, New York.Google Scholar
  11. [Grattan-Guinness 2000] Grattan-Guinness, I. “The Emergence of Mathematical Analysis and Its Foundational Progress, 1780–1880.” In From the Calculus to Set Theory, 1630–1910, pp. 94–148, Princeton Paperbacks, Princeton University Press, Princeton, New Jersey.Google Scholar
  12. [Kanovei et al. 2015] Kanovei, V., Katz, K., Katz, M., Schaps, M. “Proofs and Retributions, Or: Why Sarah Can’t Take Limits.” Foundations of Science 20, no. 1, 1–25. See 10.1007/s10699-013-9340-0.
  13. [Katz et al. 2013] Katz, M., Schaps, D., Shnider, S. “Almost Equal: The Method of Adequality from Diophantus to Fermat and Beyond.” Perspectives on Science 21, no. 3, 283–324. See http://www. and
  14. [Katz & Sherry 2012] Katz, M., Sherry, D. “Leibniz’s Laws of Continuity and Homogeneity.” Notices of the American Mathematical Society 59, no. 11, 1550–1558. See notices/201211/rtx121101550p.pdf and 1211.7188.
  15. [Katz & Sherry 2013] Katz, M., Sherry, D. “Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond.” Erkenntnis 78, no. 3, 571–625. See and
  16. [Lagrange 1772] Lagrange, J. “Sur une nouvelle espece de calcul relatif a la différentiation et a l’integration des quantités variables.” Nouveaux Memoires de l’Academie royale des Sciences et Belles-Lettres de Berlin. (Oeuvres, Vol. III) pp. 441–478.Google Scholar
  17. [Lagrange 1811] Lagrange, J. Mécanique Analytique. Courcier. Reissued by Cambridge University Press, 2009.Google Scholar
  18. [Meschkowski 1965] Meschkowski, H. “Aus den Briefbüchern Georg Cantors.” Archive for History of Exact Sciences 2, 503–519.Google Scholar
  19. [Reeder 2013] Reeder, P. Internal Set Theory and Euler’s Introductio in Analysin Infinitorum. M.Sc. Thesis, Ohio State University.Google Scholar
  20. [Sherry & Katz 2014] Sherry, D., Katz, M. “Infinitesimals, Imaginaries, Ideals, and Fictions.” Studia Leibnitiana 44 (2012), no. 2, 166–192. See (Article was published in 2014 even though the journal issue lists the year as 2012).

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Vladimir Kanovei
    • 1
  • Karin U. Katz
    • 2
  • Mikhail G. Katz
    • 2
  • David Sherry
    • 3
  1. 1.IPPI, Moscow MIITMoscowRussia
  2. 2.Department of MathematicsBar Ilan UniversityRamat GanIsrael
  3. 3.Department of PhilosophyNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations