The Mathematical Intelligencer

, Volume 38, Issue 1, pp 56–66 | Cite as

“Mathematics Knows NoRaces”: A Political Speech that David Hilbert Planned for the ICM in Bologna in 1928

  • Reinhard Siegmund-SchultzeEmail author
Years Ago David E. Rowe, Editor


Mathematical Intelligencer Teaching Position Political Speech Plenary Talk Civilized World 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albers, D. J., Alexanderson, G. L., and Reid, C. 1987: International Mathematical Congresses. An Illustrated History 1893-1986, New York, Springer.Google Scholar
  2. Alexanderson, G. L. 2011: Remembering Constance Reid (1918-2010), Notices AMS 58, 1458-1459.Google Scholar
  3. Anon. 1928: International Congress of Mathematics at Bologna, Nature 122, 494-495.Google Scholar
  4. Atti. 1929: Atti del Congresso Internazionale dei Matemataci Bologna 3-10 Settembre 1928 (VI), 6 volumes, Bologna, N. Zanichelli, 1929-1932. (Here quoted volume 1 [1929]).Google Scholar
  5. Blaschke, W. 1930: Internationale Kongresse für Mathematik, Forschungen und Fortschritte 6, 356.Google Scholar
  6. Blumenthal, O. 1935: Lebensgeschichte, in: Hilbert (1935), 388-429.Google Scholar
  7. Born, M., and Einstein, A. 1971: The Born-Einstein-Letters, London, MacMillan.Google Scholar
  8. Bortolotti, E. 1928: Congresso internazionale dei Matematici (Bologna 3.-10.9.1928). Bollettino U. M. I. 7, 221-228, 266-284.Google Scholar
  9. Bru, B. 2003: Souvenirs de Bologne, Journal de la Société Française de Statistique, 144, 135-226.Google Scholar
  10. Buhl, A. 1928: Souvenirs de Bologne, L’Enseignement Mathématique 27, 193-202.Google Scholar
  11. Chislenko, E., and Tschinkel, Y. 2007: The Felix Klein Protocols, Notices AMS 54, 960-970.Google Scholar
  12. Courant, R. 1981: Reminiscences from Hilbert’s Göttingen, The Mathematical Intelligencer 3, no. 4, 154-164.Google Scholar
  13. Curbera, G. P. 2009: Mathematicians of the World, Unite! The International Congress of Mathematicians—A Human Endeavor, Wellesley, A. K. Peters.Google Scholar
  14. Dauben, J. 1980: Mathematicians and World War I: The International Diplomacy of G. H. Hardy and Gösta Mittag-Leffler as Reflected in Their Personal Correspondence, Historia Mathematica 7, 261-288.Google Scholar
  15. Ermolaeva, N. S. (ed.). 1989: Correspondence between N. N. Luzin and A. N. Krylov (Russian), Istoriko-Matematicheskie Issledovanija 31, 203-272.Google Scholar
  16. Ewald, W. (ed.). 1996: From Kant to Hilbert. A Source Book in the Foundations of Mathematics, 2 volumes, Oxford, Clarendon Press.Google Scholar
  17. Fehr, H. 1929: Le Congrès de Bologne 3-10 Septembre 1928, L’Enseignement Mathématique 28, 28-53.Google Scholar
  18. Forman, P. 1971: Weimar Culture, Causality, and Quantum Theory, 1918-1927: Adaptation by German Physicists and Mathematicians to a Hostile Intellectual Environment, Historical Studies in the Physical Sciences 3, 1-115.Google Scholar
  19. Gingrich, C. H. 1928: International Congress of Mathematics at Bologna, Popular Astronomy 36, 529-532.Google Scholar
  20. Goldstein, C., Schappacher, N., and Schwermer, J. (eds.). 2007: The Shaping of Arithmetic after C. F. Gauss’s Disquisitiones Arithmeticae, Berlin, Springer.Google Scholar
  21. Hilbert, D. 1922: Neubegründung der Mathematik. Erste Mitteilung (1922), here quoted from the English translation in Ewald (1996, volume II, pp. 1115-1134).Google Scholar
  22. Hilbert, D. 1928: Probleme der Grundlegung der Mathematik, in Atti (1929, vol. 1, pp. 135-141).Google Scholar
  23. Hilbert, D. 1930: Naturerkennen und Logik, here quoted from the English translation in Ewald (1996, volume II, pp. 1157-1165).Google Scholar
  24. Hilbert, D. 1935: Gesammelte Abhandlungen, vol. 3, Berlin, Springer.Google Scholar
  25. Kleinert, A. 1978: Von der Science allemande zur Deutschen Physik: Nationalismus und moderne Naturwissenschaft in Frankreich und Deutschland zwischen 1914 und 1940, Francia 6, 509-525.Google Scholar
  26. Lehto, O. 1998: Mathematics Without Borders. A History of the International Mathematical Union, New York, Springer.Google Scholar
  27. Lusin, N. 1928: Sur les voies de la théorie des ensembles, in Atti (1929, vol. 1, 295-299).Google Scholar
  28. Lusin, N. 1930: Leçons sur les ensembles analytiques et leurs applications, Paris, Gauthier-Villars.Google Scholar
  29. Mehrtens, H. 1987: Ludwig Bieberbach and “Deutsche Mathematik,” in Phillips E. (ed.). Studies in the History of Mathematics, Washington, D.C., Mathematical Association of America, 195–241.Google Scholar
  30. Mehrtens, H. 1990: Moderne, Sprache, Mathematik, Frankfurt, Suhrkamp.Google Scholar
  31. Picard, É. 1916: L’histoire des sciences et les prÉtentions de la science allemande, Paris, Perrin.Google Scholar
  32. Reid, C. 1970: Hilbert, Heidelberg, Springer.Google Scholar
  33. Rowe, D. 1986: “Jewish Mathematics” at Göttingen in the Era of Felix Klein, ISIS 77, 422-449.Google Scholar
  34. Segal, S. L. 2003: Mathematicians under the Nazis, Princeton, N.J., Princeton University Press.Google Scholar
  35. Siegmund-Schultze, R. 2001: Rockefeller and the Internationalization of Mathematics Between the Two World Wars. Documents and Studies for the Social History of Mathematics in the 20th Century, Basel, Birkhäuser.Google Scholar
  36. Siegmund-Schultze, R. 2008: Antisemitismus in der Weimarer Republik und die Lage jüdischer Mathematiker: Thesen und Dokumente zu einem wenig erforschten Thema, Sudhoffs Archiv 92, no. 1, 20-34.Google Scholar
  37. Siegmund-Schultze, R. 2009: Mathematicians fleeing from Nazi Germany: Individual Fates and Global Impact, Princeton and Oxford, Princeton University Press.Google Scholar
  38. Siegmund-Schultze, R. 2011: Opposition to the Boycott of German Mathematics in the Early 1920s: Letters by Edmund Landau (1877–1938) and Edwin Bidwell Wilson (1879–1964), Revue d’histoire des mathématiques 17, 139-165.Google Scholar
  39. Siegmund-Schultze, R. 2012: Landau and Schur—Documents of a Friendship until Death in an Age of Inhumanity, EMS Newsletter no. 84, 31-36.Google Scholar
  40. Siegmund-Schultze, R. 2014: One hundred years after the Great War (1914-2014): A Century of Breakdowns, Resumptions and Fundamental Changes in International Mathematical Communication, Proceedings ICM Seoul 2014, vol. 4, 1231-1253.Google Scholar
  41. Siegmund-Schultze, R. 2015: Rockefeller Philanthropy and Mathematical Emigration between World Wars, The Mathematical Intelligencer 37, no.1, 10–19.Google Scholar
  42. Tonelli, L. 1929: Report on the 1928 International Congress of Mathematicians, Bulletin AMS 35, 201-204.Google Scholar
  43. To the Civilized World. 1919, The North American Review 210, no. 765, 284-287.Google Scholar
  44. Vahlen, T. 1923: Wert und Wesen der Mathematik, Greifswalder Universitätsreden Nr. 9, Greifswald 32 pp.Google Scholar
  45. Van Dalen, D. (ed.). 2011: The Selected Correspondence of L .E. J. Brouwer, London, Springer.Google Scholar
  46. Van Dalen, D. 2013: L. E. J. Brouwer: Topologist, Intuitionist, Philosopher, London, Springer.Google Scholar
  47. Van Heijenoort, J. (ed.). 1967: From Frege to Gödel. A Source Book in Mathematical Logic, 1879-1931, Cambridge, MA, Harvard University Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Faculty of Engineering and ScienceUniversity of AgderKristiansand SNorway

Personalised recommendations