Advertisement

The Mathematical Intelligencer

, Volume 36, Issue 4, pp 87–97 | Cite as

Euclid’s Proof of the Infinitude of Primes: Distorted, Clarified, Made Obsolete, and Confirmed in Modern Mathematics

  • Reinhard Siegmund-SchultzeEmail author
Article
  • 577 Downloads

Keywords

Prime Number Mathematical Intelligencer Modern Mathematician Indirect Proof Euclidean Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrow-Green, J., 2006: “Much necessary for all sortes of men”: 450 years of Euclid’s Elements in English, BSHM Bulletin 21, 2–25.CrossRefzbMATHMathSciNetGoogle Scholar
  2. Boolos, G., Burgess, J. P., and Jeffrey, R. C., 1980: Computability and Logic, Cambridge: Cambridge University Press.Google Scholar
  3. Dirichlet, P. G. L., 1863: Lectures on Number Theory (supplements by R. Dedekind); [Publication of Dedekind’s posthumous edition of 1863 of Dirichlet’s lectures with later supplements I-IX by Dirichlet, translated by J. Stillwell], AMS, 1999.Google Scholar
  4. Dickson, L. E., 1919: History of the Theory of Numbers, vol. 1, Divisibility and Primality. Washington: The Carnegie Institution.zbMATHGoogle Scholar
  5. Euclid, 1908, 1926: The Thirteen Books of The Elements, translated with introduction and commentary by Sir Thomas Heath, New York: Dover 1956.Google Scholar
  6. Euclide d’Alexandrie, 1990–2001: Les ÉlÉments, traduit du texte de Heiberg, Traduction et commentaires par Bernard Vitrac; 4 volumes, Paris : Presses Universitaires de France.Google Scholar
  7. Graham, Ronald L., Donald E. Knuth, and Oren Patashnik, 1989: Concrete Mathematics: A Foundation for Computer Science, Reading, etc. Boston: Addison-Wesley.Google Scholar
  8. Hardy, M., 2013: Three Thoughts on “Prime Simplicity,” The Mathematical Intelligencer 35(1), 2.CrossRefMathSciNetGoogle Scholar
  9. Hardy, M., and Woodgold, C., 2009: Prime Simplicity, Mathematical Intelligencer 31(4), 44–52CrossRefzbMATHMathSciNetGoogle Scholar
  10. Hardy, G. H., 1908: A Course of Pure Mathematics, Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  11. Hardy, G. H., 1938: A Course of Pure Mathematics, 7th edition, Cambridge: Cambridge University Press.Google Scholar
  12. Hardy, G. H., 1940: A Mathematician’s Apology, Cambridge: Cambridge University Press.Google Scholar
  13. Hardy, G. H., and E. M. Wright, 1938: An Introduction to Number Theory, Oxford, Oxford University Press.Google Scholar
  14. Heijenoort, J. v. (ed.), 1967: From Frege to Gödel, Cambridge: Harvard University Press.Google Scholar
  15. Hilbert, D., 1925: Über das Unendliche, Mathematische Annalen 95 (1926), 172, quoted from the English translation by Stefan Bauer-Mengelberg in Heijenoort (1967), 367–392.Google Scholar
  16. Knorr, W., 1975: The Evolution of the Euclidean Elements, Dordrecht: Reidel.CrossRefzbMATHGoogle Scholar
  17. Knorr, W., 1976: Problems in the Interpretation of Greek Number Theory: Euclid and the “Fundamental Theorem of Arithmetic,” Studies in Hist. and Philosophy of Science Part A 7 (4), 353–368.Google Scholar
  18. Knuth, D. E., 1981: The Art of Computer Programming, vol. 2, Seminumerical Algorithms, 2nd edition: Reading: Addison-Wesley.Google Scholar
  19. Meštrović, Romeo, 2012: Euclid’s theorem on the infinitude of primes: A historical survey of its proofs (300 bc to 2012), http://arxiv.org/abs/1202.3670v2, 5 June 2012, 66p.
  20. Mullins, A. A., 1963: Recursive Function Theory (A Modern Look at a Euclidean Idea), Bulletin AMS 69, 737.CrossRefGoogle Scholar
  21. Nikolić, M., 1974: The Relation between Eudoxos’ Theory of Proportions and Dedekind’s Theory of Cuts, In: Cohen, R. S., J. J. Stachel, and M. W. Wartofsky (eds.), For Dirk Struik: Scientific, Historical and Political Essays in Honor of Dirk J. Struik, Dordrecht: D. Reidel, 225–243.CrossRefGoogle Scholar
  22. Ribenboim, P., 1996: The New Book of Prime Number Records, New York: Springer.CrossRefzbMATHGoogle Scholar
  23. Unguru, S., 1975: On the Need to Rewrite the History of Greek Mathematics, Archive for the History of Exact Sciences 15, 67–114.CrossRefzbMATHMathSciNetGoogle Scholar
  24. Vitrac, B., 1994: Euclide d’Alexandrie, 1990–2001, volume 2.Google Scholar
  25. Weil, A., 1978: History of Mathematics: Why and How? Proceedings of the International Congress of Mathematicians, Helsinki 1, 227–236.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Faculty of Engineering and ScienceUniversity of AgderKristiansand SNorway

Personalised recommendations