The Mathematical Intelligencer

, Volume 36, Issue 4, pp 28–35 | Cite as

A Survey of the Differential Geometry of Discrete Curves

  • Daniel Carroll
  • Eleanor Hankins
  • Emek Kose
  • Ivan SterlingEmail author


Centered Case Original Curve Frenet Frame Elastic Curve Discrete Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ardentov, A. A. and Sachkov, Yu. L. “Solution to Euler's Elastic Problem”, Automation and Remote Control, Vol. 70, No. 4 (2009), 633–643.Google Scholar
  2. 2.
    Bishop, R. “There is more than one way to frame a curve”, Amer. Math. Monthly 82 (1975), 246–251.Google Scholar
  3. 3.
    Bertolazzi, E. and Frego, M. “Fast and accurate \({\rm G}^1\) fitting of clothoid curves”, arXiv:1305.6644v2 (2013).
  4. 4.
    A. Bobenko, A. and Pinkall, U. “Discrete surfaces with constant negative Gaussian curvature and the Hirota equation”, J. Diff. Geom. 43 (1990), 527–611.Google Scholar
  5. 5.
    Carroll, D., Kose, E., and Sterling, I. “Improving Frenet’s Frame using Bishop’s Frame”, J. of Mathematics Research, Vol. 5, No. 4 (2013), 97–106.Google Scholar
  6. 6.
    Doliwa, A. and Santini P. “Integrable dynamics of a discrete curve and the Ablowitz-Ladik hierarchy”, J. Math. Phys. 36 (1995), 1259–1273.Google Scholar
  7. 7.
    Hoffman, T. “Discrete Curves and Surfaces”, Ph.D. Thesis, Technische Universität Berlin (2000).Google Scholar
  8. 8.
    Levien, R. “From Spiral to Spline: Optimal Techniques in Interactive Curve Design”, Ph.D. Thesis, University of California, Berkeley (2009).Google Scholar
  9. 9.
    McCrae, J. and Singh, K. “Sketching piecewise clothoid curves”, Computers & Graphics, Vol. 33, Issue 4 (Aug. 2009), 452461.Google Scholar
  10. 10.
    Oldfather, W. A., Ellis, C. A., and Brown, Donald M. “Leonhard Euler’s elastic curves”, Isis, Vol. 20, No. 1 (Nov. 1933), 72–160.Google Scholar
  11. 11.
    Sogo, K. “Variational discretization of Euler's Elastica problem”, J. of the Physical Society of Japan, Vol. 75, Issue 6 (2006), 064007-064007-4.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Daniel Carroll
    • 1
    • 2
  • Eleanor Hankins
    • 1
    • 2
  • Emek Kose
    • 1
    • 2
  • Ivan Sterling
    • 1
    • 2
    Email author
  1. 1.Mathematics and Computer ScienceSt Mary’s College of MarylandSaint MarysUSA
  2. 2.Department of MathematicsThe University of TenneseeKnoxvilleUSA

Personalised recommendations