Advertisement

The Mathematical Intelligencer

, Volume 36, Issue 4, pp 22–27 | Cite as

Gödel, Gentzen, Goodstein: The Magic Sound of a G-String

  • Jan von PlatoEmail author
Article

Keywords

Mathematical Intelligencer Natural Deduction Sequent Calculus Arithmetical Code Peano Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Gödel, K. (1931) On formally undecidable propositions of Principia Mathematica and related systems I. (English translation of German original), in J. van Heijenoort, ed., From Frege to Gödel, A Source Book in Mathematical Logic, 1879–1931, pp. 596–617, Harvard University Press, 1967.Google Scholar
  2. Gentzen, G. (1934–35) Untersuchungen über das logische Schliessen. Mathematische Zeitschrift, vol. 39, pp. 176–210 and 405–431.Google Scholar
  3. Gentzen, G. (1936) Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen, vol. 112, pp. 493–565.Google Scholar
  4. Gentzen, G. (1938) Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie. Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, vol. 4, pp. 19–44.Google Scholar
  5. Gentzen, G. (1943) Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie. Mathematische Annalen, vol. 120, pp. 140–161.Google Scholar
  6. Gentzen, G. (1969) The Collected Papers of Gerhard Gentzen, M. Szabo, ed. North-Holland Publ. Co., Amsterdam.Google Scholar
  7. Goodstein, R. (1944) On the restricted ordinal theorem. The Journal of Symbolic Logic, vol. 9, pp. 33–41.Google Scholar
  8. Goodstein, R. (1945) Function theory in an axiom-free equation calculus. Proceedings of the London Mathematical Society, vol. 48, pp. 401–434.Google Scholar
  9. Goodstein, R. (1958) On the nature of mathematical systems. Dialectica, vol. 12, pp. 296–316.Google Scholar
  10. Hempel, C. (2000) An intellectual autobiography. In Science, Explanation, and Rationality, J. Fetzer, ed., pp. 3–35. Oxford University Press, New YorkGoogle Scholar
  11. Kirby, L. and J. Paris (1982) Accessible independence results for Peano arithmetic. Bulletin of the London Mathematical Society, vol. 14, pp. 285–293.Google Scholar
  12. Paris, J. and L. Harrington (1977) A mathematical incompleteness in Peano arithmetic. In J. Barwise, ed., Handbook of Mathematical Logic, pp. 1133–1142, North-Holland.Google Scholar
  13. von Plato, J. (2014) From Hauptsatz to Hilfssatz. In M. Baaz, R. Kahle and M. Rathjen eds., Gentzen’s Centenary: The Quest of Consistency, in press.Google Scholar
  14. Stillwell, J. (2010) Roads to Infinity: The Mathematics of Truth and Proof. A. K. Peters, Wellesley, Massachusetts.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University of HelsinkiHelsinkiFinland

Personalised recommendations