The Mathematical Intelligencer

, Volume 36, Issue 2, pp 37–44 | Cite as

Geometric Clustering for the Consolidation of Farmland and Woodland

  • Steffen Borgwardt
  • Andreas Brieden
  • Peter Gritzmann


Land Consolidation Polyhedral Approximation Power Diagram Lease Agreement Mathematical Intelligencer Figure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge recognition through the EURO Excellence in Practice Award 2013.

An extended summary of this article appeared in IFORS News.


  1. [1]
    Aurenhammer, F. (1987) Power diagrams: properties, algorithms and applications. SIAM J. Computing 16, 78–96.Google Scholar
  2. [2]
    Aurenhammer, F., Hoffmann, F., Aronov, B. (1992) Minkowski-type theorems and least-squares partitioning. In: Proc. 8th Ann. ACM Symp. Comput. Geom., Berlin, 350–357.Google Scholar
  3. [3]
    Aurenhammer, F., Hoffmann, F., Aronov, B. (1998) Minkowski-type theorems and least-squares clustering. Algorithmica 20, 61–76.Google Scholar
  4. [4]
    Aurenhammer, F., Klein, R. (2000) Voronoi diagrams. In: Handbook of Computational Geometry, Sack, J., Urrutia, G., eds., Elsevier, 201–290.Google Scholar
  5. [5]
    Bárány, I. and Füredi, Z. (1986) Computing the volume is difficult, Proc. 18th Annual ACM Symposium on Theory of Computing, 442–447.Google Scholar
  6. [6]
    Barnes, E. R., Hoffman, A. J., Rothblum, U. G. (1992) Optimal partitions having disjoint convex and conic hulls. Math. Prog. 54, 69–86.Google Scholar
  7. [7]
    Borgwardt, S. (2010). A combinatorial optimization approach to constrained clustering. Ph.D. Thesis, TU München.Google Scholar
  8. [8]
    Borgwardt, S. (2013) On the diameter of partition polytopes and vertex-disjoint cycle cover. Math. Prog. 141, 1–20.Google Scholar
  9. [9]
    Borgwardt, S. (2013) On soft power diagrams. arXiv:1307.3949Google Scholar
  10. [10]
    Borgwardt, S., Brieden, A., Gritzmann, P. (2011) Constrained minimum k-star clustering and its application to the consolidation of farmland. Oper. Research 11:1–17.Google Scholar
  11. [11]
    Borgwardt, S., Schmiedl, F. (2014) Threshold-based preprocessing for approximating the weighted dense k-subgraph problem. European J. Oper. Research 234, 631–640.Google Scholar
  12. [12]
    Brieden, A., Gritzmann, P. (2004) A quadratic optimization model for the consolidation of farmland by means of lend–lease agreements. In: Operations Research Proceedings 2003: Selected Papers of the International Conference on Operations Research (OR 2003), Ahr, D., Fahrion, R., Oswald, M., Reinelt, G., eds. Springer-Verlag, Heidelberg, 324–331.Google Scholar
  13. [13]
    Brieden, A., Gritzmann, P. (2010) On clustering bodies: geometry and polyhedral approximation, Discrete Comp. Geom. 44, 508–534.Google Scholar
  14. [14]
    Brieden, A., Gritzmann, P. (2012) On optimal weighted balanced clusterings: gravity bodies and power diagrams, SIAM J. Discrete Math. 26, 415–434.Google Scholar
  15. [15]
    Brieden, A., Gritzmann, P., Kannan, R., Klee, V., Lovász, L., Simonovits, M. (1998) Approximation of diameters: randomization doesn’t help, IEEE Symp. Found. Computer Sci. (FOCS’98), 244 – 251.Google Scholar
  16. [16]
    Brieden, A., Gritzmann, P., Kannan, R., Klee, V., Lovász, L., Simonovits, M. (2001) Deterministic and randomized polynomial-time approximation of radii, Mathematika 48, 63–105.Google Scholar
  17. [17]
    Kochol, M. (1994) Constructive approximation of a ball by polytopes, Math. Slovaca 44, 99–105.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Steffen Borgwardt
    • 1
  • Andreas Brieden
    • 2
  • Peter Gritzmann
    • 1
  1. 1.Zentrum MathematikTechnische Universität MünchenMunichGermany
  2. 2.Universität der BundeswehrNeubibergGermany

Personalised recommendations