The Mathematical Intelligencer

, Volume 35, Issue 4, pp 61–74 | Cite as

Paper Pentasia: An Aperiodic Surface in Modular Origami



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. G. de Bruijn. Algebraic theory of penrose’s non-periodic tilings of the plane I. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series A, 84(1):39–52, 1981.Google Scholar
  2. [2]
    Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press, 2007.Google Scholar
  3. [3]
    Tomoko Fuse. Unit Origami: Multidimensional Transformations. Japan Publications, Tokyo, Japan, 1990.Google Scholar
  4. [4]
    Martin Gardner. Penrose Tiles to Trapdoor Ciphers: And the Return of Dr. Matix. W. H. Freeman & Co., 1988.Google Scholar
  5. [5]
    Thomas Hull. Project Origami. A K Peters Ltd., 2006.Google Scholar
  6. [6]
    Lyman Hurd. Penrose tiles., retrieved 2012-04-09, 2010.
  7. [7]
    Kunihiko Kasahara and Toshie Takahama. Origami For the Connoisseur. Japan Publications, Tokyo, Japan, 1987.Google Scholar
  8. [8]
    Robert J. Lang. Penrose tiles 3D., retrieved 2012-07-30, 2010.
  9. [9]
    Robert J. Lang. Modular origami: the DeZZ unit., retrieved 2012-07-30, 2012.
  10. [10]
    Jeannine Mosely. Business card menger sponge exhibit., retrieved 2012-04-04, 2006.
  11. [11]
    Jeannine Mosely. The mosely snowflake sponge., retrieved 2012-04-04, 2012.
  12. [12]
    Meenakshi Mukerji. Marvelous Modular Origami. A K Peters Ltd., 2007.Google Scholar
  13. [13]
    Robert E. Neale and Thomas Hull. Origami Plain and Simple. St. Martin’s Press, 1994.Google Scholar
  14. [14]
    Roger Penrose. Pentaplexity. Eureka, 39:16–22, 1978.Google Scholar
  15. [15]
    Roger Penrose. Pentaplexity. The Mathematical Intelligencer, 2:32–37, 1979.Google Scholar
  16. [16]
    Anne Preston. You were in heaven., retrieved 2012-04-14, 2000.
  17. [17]
    Przemyslaw Prusinkiewicz, Aristid Lindenmayer, J. S. Hanan, and F.D. Fracchia. The Algorithmic Beauty of Plants. Springer, 1991.Google Scholar
  18. [18]
    Lewis Simon, Bennett Arnstein, and Rona Gurkewitz. Modular Origami Polyhedra. Dover Publications, Mineola, New York, 1999.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.AlamoUSA
  2. 2.Stanford UniversityStanfordUSA

Personalised recommendations