Advertisement

The Mathematical Intelligencer

, Volume 36, Issue 2, pp 27–29 | Cite as

The Pigeonhole Principle, Two Centuries Before Dirichlet

  • Benoît RittaudEmail author
  • Albrecht Heeffer
Years Ago David E. Rowe, Editor

Keywords

Pigeonhole Principle French Writer Public Disputationes Modern Edition Individual Mathematician 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    [Jean Appier Hanzelet], Récréation mathematicque composee de plusieurs problemes plaisants et facetieux, Jean Appier Hanzelet, 1624.Google Scholar
  2. [2]
    [Jean Appier Hanzelet], Mathematicall Recreations, T. Cotes, 1633.Google Scholar
  3. [3]
    Charles-Irénée Castel de Saint-Pierre, Ouvrajes de morale et de politique, Beman, 1737.Google Scholar
  4. [4]
    Morris Cohen & Ernest Nagel, An Introduction to Logic, Hackett Publishing, 1993.Google Scholar
  5. [5]
    Peter Gustav Lejeune Dirichlet, “Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen nebst einigen Anwendungen auf die Theorie de Zahlen,” Bericht über die Verhandlungen der Königl. Preuss. Akademie der Wissenschaften, 1842, pp. 93–95.Google Scholar
  6. [6]
    Peter Gustav Lejeune Dirichlet, Vorlesungen über Zahlentheorie, F. Vieweg, 1863, pp. 405–406.Google Scholar
  7. [7]
    Peter Gustav Lejeune Dirichlet, “Recherches sur les formes quadratiques à coefficients et à indéterminées complexes”, Journal für die reine und angewandte Mathematik, 24: 291–371, 1842.Google Scholar
  8. [8]
    Peter Gustav Lejeune Dirichlet, Werke, vol. 1, Reimer, 1889.Google Scholar
  9. [9]
    George Eliot, Silly Novels by Lady Novelists, Penguin UK, 2010.Google Scholar
  10. [10]
    Miguel de Guzmán, Aventuras Matemáticas, Pirámide, 1995.Google Scholar
  11. [11]
    Albrecht Heeffer, “Récréations Mathématiques (1624) A Study on its Authorship, Sources and Influence”, Gibeciere 1: 77–167, 2006.Google Scholar
  12. [12]
    Albrecht Heeffer, “Wonder to those who are ignorant in the cause.” A modern edition of Récréation Mathématique (1624) based on its English translation, with an introduction and notes, a glossary and commentaries, Springer (forthcoming).Google Scholar
  13. [13]
    [Jean Leurechon], Selectæ Propositiones in Tota Sparsim Mathematica Pulcherrimæ, Gasparem Bernardum, 1622.Google Scholar
  14. [14]
    Marin Mersenne, La Vérité des sciences, Toussainct du Bray, 1625.Google Scholar
  15. [15]
    Jeff Miller, “Earliest Known Uses of Some of the Words of Mathematics (P),” http://jeff560.tripod.com/p.html (last revision 4 August 2011).
  16. [16]
    Charles-Augustin Sainte-Beuve, “Madame de Longueville,” Revue des deux mondes 3: 359–377, 1840.Google Scholar
  17. [17]
    Charles-Augustin Sainte-Beuve, La Bruyère et la Rochefoucauld. Mme de La Fayette et Mme de Longueville, Fournier, 1842.Google Scholar
  18. [18]
    Charles-Augustin Sainte-Beuve, Portraits de femmes, Didier, 1844.Google Scholar
  19. [19]
    David Singmaster, Sources in Recreational Mathematics, Eighth Preliminary edition (unpublished copy by the author).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Université Paris-13, Sorbonne Paris Cité, Laboratoire Analyse, Géométrie et Applications, CNRS, UMR 7539VilletaneuseFrance
  2. 2.Ghent University, Center for History of ScienceGhentBelgium

Personalised recommendations