The Mathematical Intelligencer

, Volume 34, Issue 1, pp 18–28

Forcing Nonperiodicity with a Single Tile



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. P. DiVincenzo and P. J. Steinhardt. Quasicrystals: the state of the art, volume 16 of Direction in condensed matter physics. World Scientific, second edition, 1999.Google Scholar
  2. [2]
    C. Janot. Quasicrystals: a primer. Oxford University Press, New York, 1997.Google Scholar
  3. [3]
    R. Berger. The undecidability of the domino problem. Mem. Amer. Math. Soc., 66:1–72, 1966.Google Scholar
  4. [4]
    R. Penrose. The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl., 10:266–271, 1974.Google Scholar
  5. [5]
    M. Gardner. Mathematical games. Sci. Am., 236:110–121, 1977.CrossRefGoogle Scholar
  6. [6]
    J. E. S. Socolar and J. M. Taylor. An aperiodic hexagonal tile. Journal of Combinatorial Theory: Series A, 118:2207–2231, 2011.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    M. Dekking, M. Mendès France, and A. van der Poorten. Folds. Mathematical Intelligencer, 4, no. 4:173–181, 1982.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    P. Gummelt. Penrose tilings as coverings of congruent decagons. Geometriae Dedicata, 62:1–17, 1996.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    P. J. Steinhardt and H. C. Jeong. A simpler approach to Penrose tiling with implications for quasicrystal formation. Nature, 382:431–433, 1996.CrossRefGoogle Scholar
  10. [10]
    L. Danzer. A family of 3D–spacefillers not permitting any periodic or quasiperiodic tiling, pages 11–17. In Aperiodic ’94 (G. Chapuis, Ed., World Scientific, Singapore), 1995.Google Scholar
  11. [11]
    C. Goodman-Strauss. Open questions in tilings. Available at
  12. [12]
    A. R. Kortan, R. S. Becker, F. A. Thiel, and H. S. Chen. Real-space atomic structure of a two-dimensional decagonal quasicrystal. Physical Review Letters, 64:200–203, 1990.CrossRefGoogle Scholar
  13. [13]
    Branko Grünbaum and G. C. Shephard. Tilings and patterns. W. H. Freeman, New York, NY, USA, 1986.Google Scholar
  14. [14]
    J. E. S. Socolar. Hexagonal parquet tilings: k–isohedral monotiles with arbitrarily large k. Mathematical Intelligencer, 29, no. 2:33–38, 2007. Proper version available at
  15. [15]
    D. Fletcher. A construction of a nonperiodic tiling with simple atlas matching rules and one prototile. Private communication, December 2009.Google Scholar
  16. [16]
    D. Frettloh and E. Harriss. Tilings encyclopedia.
  17. [17]
    R. Penrose. Remarks on tiling: Details of a \((1+\epsilon+\epsilon^{2})\) –aperiodic set, pages 467–497. In The mathematics of long-range aperiodic order (R. V. Moody, Ed., NATO ASI Series C, 489, Kluwer Academic Publishers, Dordrecht), 1997.Google Scholar
  18. [18]
    Y. Araki. Mimicry beetles., 2010.
  19. [19]
    F. Gähler and R. Klitzing. The diffraction pattern of self–similar tilings, pages 141–174. In The mathematics of long-range aperiodic order (R. V. Moody, Ed., NATO ASI Series C, 489, Kluwer Academic Publishers, Dordrecht), 1997.Google Scholar
  20. [20]
    C. Godreche. The sphinx: a limit–periodic tiling of the plane. Journal of Physics A: Mathematical and General, 22:L1163, 1989.MathSciNetCrossRefGoogle Scholar
  21. [21]
    J. Myers. Polyomino, polyhex and polyiamond tiling., 2009. See table of n–hexes with anisohedral number k.
  22. [22]

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Physics Department and Center for Nonlinear and Complex SystemsDuke UniversityDurhamUSA
  2. 2.BurnieAustralia

Personalised recommendations