The Mathematical Intelligencer

, Volume 34, Issue 1, pp 18–28 | Cite as

Forcing Nonperiodicity with a Single Tile

  • Joshua E. S. SocolarEmail author
  • Joan M. Taylor


Mathematical Intelligencer Triangular Lattice Black Ring Matching Rule Tile Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. P. DiVincenzo and P. J. Steinhardt. Quasicrystals: the state of the art, volume 16 of Direction in condensed matter physics. World Scientific, second edition, 1999.Google Scholar
  2. [2]
    C. Janot. Quasicrystals: a primer. Oxford University Press, New York, 1997.Google Scholar
  3. [3]
    R. Berger. The undecidability of the domino problem. Mem. Amer. Math. Soc., 66:1–72, 1966.Google Scholar
  4. [4]
    R. Penrose. The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl., 10:266–271, 1974.Google Scholar
  5. [5]
    M. Gardner. Mathematical games. Sci. Am., 236:110–121, 1977.CrossRefGoogle Scholar
  6. [6]
    J. E. S. Socolar and J. M. Taylor. An aperiodic hexagonal tile. Journal of Combinatorial Theory: Series A, 118:2207–2231, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    M. Dekking, M. Mendès France, and A. van der Poorten. Folds. Mathematical Intelligencer, 4, no. 4:173–181, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    P. Gummelt. Penrose tilings as coverings of congruent decagons. Geometriae Dedicata, 62:1–17, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    P. J. Steinhardt and H. C. Jeong. A simpler approach to Penrose tiling with implications for quasicrystal formation. Nature, 382:431–433, 1996.CrossRefGoogle Scholar
  10. [10]
    L. Danzer. A family of 3D–spacefillers not permitting any periodic or quasiperiodic tiling, pages 11–17. In Aperiodic ’94 (G. Chapuis, Ed., World Scientific, Singapore), 1995.Google Scholar
  11. [11]
    C. Goodman-Strauss. Open questions in tilings. Available at
  12. [12]
    A. R. Kortan, R. S. Becker, F. A. Thiel, and H. S. Chen. Real-space atomic structure of a two-dimensional decagonal quasicrystal. Physical Review Letters, 64:200–203, 1990.CrossRefGoogle Scholar
  13. [13]
    Branko Grünbaum and G. C. Shephard. Tilings and patterns. W. H. Freeman, New York, NY, USA, 1986.Google Scholar
  14. [14]
    J. E. S. Socolar. Hexagonal parquet tilings: k–isohedral monotiles with arbitrarily large k. Mathematical Intelligencer, 29, no. 2:33–38, 2007. Proper version available at
  15. [15]
    D. Fletcher. A construction of a nonperiodic tiling with simple atlas matching rules and one prototile. Private communication, December 2009.Google Scholar
  16. [16]
    D. Frettloh and E. Harriss. Tilings encyclopedia.
  17. [17]
    R. Penrose. Remarks on tiling: Details of a \((1+\epsilon+\epsilon^{2})\) –aperiodic set, pages 467–497. In The mathematics of long-range aperiodic order (R. V. Moody, Ed., NATO ASI Series C, 489, Kluwer Academic Publishers, Dordrecht), 1997.Google Scholar
  18. [18]
    Y. Araki. Mimicry beetles., 2010.
  19. [19]
    F. Gähler and R. Klitzing. The diffraction pattern of self–similar tilings, pages 141–174. In The mathematics of long-range aperiodic order (R. V. Moody, Ed., NATO ASI Series C, 489, Kluwer Academic Publishers, Dordrecht), 1997.Google Scholar
  20. [20]
    C. Godreche. The sphinx: a limit–periodic tiling of the plane. Journal of Physics A: Mathematical and General, 22:L1163, 1989.MathSciNetCrossRefGoogle Scholar
  21. [21]
    J. Myers. Polyomino, polyhex and polyiamond tiling., 2009. See table of n–hexes with anisohedral number k.
  22. [22]

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Physics Department and Center for Nonlinear and Complex SystemsDuke UniversityDurhamUSA
  2. 2.BurnieAustralia

Personalised recommendations