The Mathematical Intelligencer

, Volume 33, Issue 3, pp 84–93 | Cite as

The Whirling Kites of Isfahan: Geometric Variations on a Theme

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Assarzadegan, ‘Dividing and composing the squares’, Lamar University Electronic Journal of Student Research, Fall, 2008. Also in History and Pedagogy of Mathematics Newsletter 68 (July 2008) 13–20.Google Scholar
  2. [2]
    J. Bourgoin, Les Eléments de l’Art Arabe: Le Trait des Entrelacs, Firmin-Didot, Paris, 1879. Plates reprinted in Arabic Geometric Pattern and Design, Dover Publications, New York, 1973.Google Scholar
  3. [3]
    J. Bonner, ‘Three traditions of self-similarity in fourteenth and fifteenth century Islamic geometric ornament’, Proc. ISAMA/Bridges: Mathematical Connections in Art, Music and Science, (Granada, 2003), eds. R. Sarhangi and N. Friedman, 2003, pp. 1–12.Google Scholar
  4. [4]
    P. R. Cromwell, ‘The search for quasi-periodicity in Islamic 5-fold ornament’, Math. Intelligencer 31 no 1 (2009) 36–56.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    P. R. Cromwell, ‘Islamic geometric designs from the Topkapi Scroll I: Unusual arrangements of stars’, J. Math. and the Arts 4 (2010) 73–85.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    P. R. Cromwell, ‘Islamic geometric designs from the Topkapi Scroll II: A modular design system’, J. Math. and the Arts 4 (2010) 119–136.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    E. H. Hankin, The Drawing of Geometric Patterns in Saracenic Art, Memoirs of the Archaeological Society of India, no 15, Government of India, 1925.Google Scholar
  8. [8]
    C. S. Kaplan, ‘Computer generated Islamic star patterns’, Proc. Bridges: Mathematical Connections in Art, Music and Science, (Kansas, 2000), ed. R. Sarhangi, 2000, pp. 105–112.Google Scholar
  9. [9]
    C. S. Kaplan, ‘Islamic star patterns from polygons in contact’, Graphics Interface 2005, ACM International Conference Proceeding Series 112, 2005, pp. 177–186.Google Scholar
  10. [10]
    P. J. Lu and P. J. Steinhardt, ‘Decagonal and quasi-crystalline tilings in medieval Islamic architecture’, Science 315 (23 Feb 2007) 1106–1110.MathSciNetCrossRefGoogle Scholar
  11. [11]
    E. Makovicky, ‘800-year old pentagonal tiling from Maragha, Iran, and the new varieties of aperiodic tiling it inspired’, Fivefold Symmetry, ed. I. Hargittai, World Scientific, 1992, pp. 67–86.Google Scholar
  12. [12]
    G. Necipoğlu, The Topkapi Scroll: Geometry and Ornament in Islamic Architecture, Getty Center Publication, Santa Monica, 1995.Google Scholar
  13. [13]
    A. Özdural, ‘Mathematics and arts: connections between theory and practice in the medieval Islamic world’, Historia Mathematica 27 (2000) 171–201.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
  15. [15]
    H. Stierlin, Islamic Art and Architecture from Isfahan to the Taj Mahal, Thames and Hudson, London, 2002.Google Scholar
  16. [16]
    D. Sutton, Islamic Design: A Genius for Geometry, Wooden Books Ltd, Glastonbury, 2007.Google Scholar
  17. [17]
    D. Wade, Pattern in Islamic Art: The Wade Photo-Archive, http://www.patterninislamicart.com/.

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Pure Mathematics Division, Mathematical Sciences BuildingUniversity of LiverpoolLiverpoolEngland

Personalised recommendations