The Mathematical Intelligencer

, Volume 33, Issue 3, pp 84–93 | Cite as

The Whirling Kites of Isfahan: Geometric Variations on a Theme

  • Peter R. CromwellEmail author
  • Elisabetta Beltrami


Mathematical Intelligencer Short Side Geometric Pattern Star Centre Star Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Assarzadegan, ‘Dividing and composing the squares’, Lamar University Electronic Journal of Student Research, Fall, 2008. Also in History and Pedagogy of Mathematics Newsletter 68 (July 2008) 13–20.Google Scholar
  2. [2]
    J. Bourgoin, Les Eléments de l’Art Arabe: Le Trait des Entrelacs, Firmin-Didot, Paris, 1879. Plates reprinted in Arabic Geometric Pattern and Design, Dover Publications, New York, 1973.Google Scholar
  3. [3]
    J. Bonner, ‘Three traditions of self-similarity in fourteenth and fifteenth century Islamic geometric ornament’, Proc. ISAMA/Bridges: Mathematical Connections in Art, Music and Science, (Granada, 2003), eds. R. Sarhangi and N. Friedman, 2003, pp. 1–12.Google Scholar
  4. [4]
    P. R. Cromwell, ‘The search for quasi-periodicity in Islamic 5-fold ornament’, Math. Intelligencer 31 no 1 (2009) 36–56.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    P. R. Cromwell, ‘Islamic geometric designs from the Topkapi Scroll I: Unusual arrangements of stars’, J. Math. and the Arts 4 (2010) 73–85.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    P. R. Cromwell, ‘Islamic geometric designs from the Topkapi Scroll II: A modular design system’, J. Math. and the Arts 4 (2010) 119–136.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    E. H. Hankin, The Drawing of Geometric Patterns in Saracenic Art, Memoirs of the Archaeological Society of India, no 15, Government of India, 1925.Google Scholar
  8. [8]
    C. S. Kaplan, ‘Computer generated Islamic star patterns’, Proc. Bridges: Mathematical Connections in Art, Music and Science, (Kansas, 2000), ed. R. Sarhangi, 2000, pp. 105–112.Google Scholar
  9. [9]
    C. S. Kaplan, ‘Islamic star patterns from polygons in contact’, Graphics Interface 2005, ACM International Conference Proceeding Series 112, 2005, pp. 177–186.Google Scholar
  10. [10]
    P. J. Lu and P. J. Steinhardt, ‘Decagonal and quasi-crystalline tilings in medieval Islamic architecture’, Science 315 (23 Feb 2007) 1106–1110.MathSciNetCrossRefGoogle Scholar
  11. [11]
    E. Makovicky, ‘800-year old pentagonal tiling from Maragha, Iran, and the new varieties of aperiodic tiling it inspired’, Fivefold Symmetry, ed. I. Hargittai, World Scientific, 1992, pp. 67–86.Google Scholar
  12. [12]
    G. Necipoğlu, The Topkapi Scroll: Geometry and Ornament in Islamic Architecture, Getty Center Publication, Santa Monica, 1995.Google Scholar
  13. [13]
    A. Özdural, ‘Mathematics and arts: connections between theory and practice in the medieval Islamic world’, Historia Mathematica 27 (2000) 171–201.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
  15. [15]
    H. Stierlin, Islamic Art and Architecture from Isfahan to the Taj Mahal, Thames and Hudson, London, 2002.Google Scholar
  16. [16]
    D. Sutton, Islamic Design: A Genius for Geometry, Wooden Books Ltd, Glastonbury, 2007.Google Scholar
  17. [17]
    D. Wade, Pattern in Islamic Art: The Wade Photo-Archive,

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Pure Mathematics Division, Mathematical Sciences BuildingUniversity of LiverpoolLiverpoolEngland

Personalised recommendations