Advertisement

A Fractal Version of the Pinwheel Tiling

  • Natalie Priebe Frank
  • Michael F. Whittaker
Article

Keywords

Control Point Mathematical Intelligencer Rigid Motion Iterate Function System Standard Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    M. Baake, D. Frettlöh, and U. Grimm, A radial analogue of Poisson’s summation formula with application to powder diffraction and pinwheel patterns, J. Geom. Phys. 57 (2007), 1331–1343.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    M. Baake, D. Frettlöh, and U. Grimm, Pinwheel patterns and powder diffraction, Phil. Mag. 87 (2007), 2831–2838.CrossRefGoogle Scholar
  3. [3]
    C. Bandt and P. Gummelt, Fractal Penrose tilings I. Construction and matching rules, Aequ. Math. 53 (1997), 295–307.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    N. P. Frank, A primer on substitutions tilings of Euclidean space, Expo. Math. 26:4 (2008), 295–326.zbMATHMathSciNetGoogle Scholar
  5. [5]
    M. Gardner, Extraordinary nonperiodic tiling that enriches the theory of tiles, Scientific American 237 (1977), 110–119.CrossRefGoogle Scholar
  6. [6]
    E. Harriss and D. Frettlöh, Tilings encyclopedia, http://tilings.math.uni-bielefeld.de/.
  7. [7]
    R. Kenyon, The construction of self-similar tilings, Geom. Func. Anal. 6:3 (1996), 471–488.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    N. P. Frank and B. Solomyak, A characterization of planar pseudo-self-similar tilings, Disc. Comp. Geom. 26:3 (2001), 289–306.Google Scholar
  9. [9]
    C. Radin, The pinwheel tilings of the plane, Annals of Math. 139:3 (1994), 661–702.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    C. Radin, Space tilings and substitutions, Geom. Dedicata 55 (1995), 257–264.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    C. Radin, Miles of Tiles, Student Mathematical Library 1, American Mathematical Society, Providence (1999).Google Scholar
  12. [12]
    E. A. Robinson, Symbolic dynamics and tilings of \({{\mathbb{R}}^d}\), Proc. Sympos. Appl. Math. 20 (2004), 81–119.Google Scholar
  13. [13]
    B. Solomyak, Dynamics of self-similar tilings, Ergodic Th. and Dynam. Sys. 17 (1997), 695–738.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    M. Whittaker, C*-algebras of tilings with infinite rotational symmetry, J. Operator Th. 64:2 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsVassar CollegePoughkeepsieUSA
  2. 2.School of Mathematics and Applied StatisticsUniversity of WollongongWollongongAustralia

Personalised recommendations