The Mathematical Intelligencer

, Volume 32, Issue 4, pp 49–52 | Cite as

How to Win Without Overtly Cheating: The Inverse Simpson Paradox

  • Ora E. PercusEmail author
  • Jerome K. Percus


Mathematical Intelligencer Opposite Conclusion Good Shape Courant Institute Statistical Decision Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abboud L. (2005) “Abbott Seeks to Clear Stalled Drug”. Wall Street Journal, Sept. 12.Google Scholar
  2. [2]
    ArXiv: 0801.4522.Google Scholar
  3. [3]
    Berger J. O. (1985) Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, New York.zbMATHGoogle Scholar
  4. [4]
    Bickel, P. J., Hammel, E. A., and O’Connell, J. W. (1975). “Sex Bias in Graduate Admissions: Data from Berkeley.” Science 187, 398–404.CrossRefGoogle Scholar
  5. [5]
    Blyth C.R. (1972) “On Simpson’s Paradox and Sure-Thing Principle,” JASA 67, No. 338, 364-366.zbMATHMathSciNetGoogle Scholar
  6. [6]
    Capocci, A. and Calaion, F. (2006). “Mixing Properties of Growing Networks and Simpson’s Paradox.” Phys. Rev. E74, 026122.Google Scholar
  7. [7]
    Moore, D. S. and McCabe, G. P. (1998). Introduction to the Practice of Statistics, 100 – 201. W. Freeman and Co., New York.Google Scholar
  8. [8]
    Moore, T. “Simpson and Simpson-like Paradox Examples.” see
  9. [9]
    Saari, D. (2001). Decisions and Elections, Cambridge University Press, Cambridge.zbMATHCrossRefGoogle Scholar
  10. [10]
    Simpson, E. H. (1951). “The Interpretation of Interaction in Contingency Tables.” J. Roy. Stat. Soc. B13, 238–241.MathSciNetGoogle Scholar
  11. [11]
    Zidek, J. (1984). “Maximal Simpson-Disaggregation of 2 × 2 Tables.” Biometrica 71, No. 1, 187–190.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations