The Mathematical Intelligencer

, Volume 32, Issue 4, pp 2–2 | Cite as

Maria Teresa Calapso’s Hyperbolic Pythagorean Theorem

  • Victor PambuccianEmail author
Letter to the Editors


Mathematical Intelligencer Hyperbolic Plane Isosceles Triangle Hyperbolic Geometry Pythagorean Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    Familiari-Calapso, M. T., Le théorème de Pythagore en géométrie absolue. C. R. Math. Acad. Sci. Paris. Sér. A-B. 263 (1966), A668–A670.MathSciNetGoogle Scholar
  2. [2]
    Familiari-Calapso, M. T., Sur une classe di triangles et sur le théorème de Pythagore en géométrie hyperbolique. C. R. Acad. Sci. Paris Sér. A–B 268 (1969), A603–A604.MathSciNetGoogle Scholar
  3. [3]
    Calapso, M. T., Ancora sul teorema di Pitagora in geometria assoluta. Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. 50 (1970), 99–107.MathSciNetGoogle Scholar
  4. [4]
    Hartshorne, R., Non-Euclidean III.36. Amer. Math. Monthly 110 (2003), 495–502.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Hilbert, D., Grundlagen der Geometrie, 12. Auflage. Teubner, Stuttgart, 1977.Google Scholar
  6. [6]
    W. Schwabhäuser, W. Szmielew, and A. Tarski, Metamathematische Methoden in der Geometrie. Springer-Verlag, Berlin, 1983.zbMATHGoogle Scholar
  7. [7]
    Vrănceanu, G., Sopra la geometria noneuclidea. Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. 50 (1970), 119–123.MathSciNetGoogle Scholar
  8. [8]
    Vrănceanu G. G., Sur la trigonométrie noneuclidienne. Rend. Circ. Mat. Palermo (2) 20 (1971), 254–262CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Division of Mathematical and Natural SciencesArizona State University—West CampusPhoenixUSA

Personalised recommendations