The Mathematical Intelligencer

, Volume 33, Issue 1, pp 72–76 | Cite as

The Problem of Malfatti: Two Centuries of Debate

  • Marco Andreatta
  • András Bezdek
  • Jan P. Boroński


Mathematical Intelligencer Spherical Triangle Inscribe Circle Tangent Circle Concave Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Atti del Convegno, Gianfranco Malfatti nella cultura del suo tempo. Univ. di Ferrara. 1982.Google Scholar
  2. [2]
    H. Eves, A Survey of Geometry, Vol. 2, Allyn and Bacon, Boston, 1965, 245–247.zbMATHGoogle Scholar
  3. [3]
    A. Fiocca, Il problema di Malfatti nella letteratura matematica dell’800, Ann. Univ. Ferrara-sez VII. vol. XXVI, 1980.Google Scholar
  4. [4]
    H. Gabai and E. Liban, On Goldberg’s inequality associated with the Malfatti problem, Math. Mag., 41 (1968), 251–252.MathSciNetCrossRefGoogle Scholar
  5. [5]
    M. Goldberg, On the original Malfatti problem, Math. Mag., 40 (1967), 241–247.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    G. Malfatti, Memoria sopra un problema sterotomico, Memorie di Matematica e di Fisica della Societa Italiana delle Scienze, 10 (1803), 235–244.Google Scholar
  7. [7]
    G. Malfatti, Opere I e II, a cura dell’Unione Matematica Italiana, ed. Cremonese, 1981.Google Scholar
  8. [8]
    G. Martin, Geometric constructions, UTM Springer, 1998.Google Scholar
  9. [9]
    H. Mellisen, Packing and covering with Circles, thesis, Univ. of Utrecht, 1997.Google Scholar
  10. [10]
    H. Lob and H.W. Richmond, The solution of Malfatti’s problem for a triangle, Proc. London Math. Soc., 30 (1930), 287–304.CrossRefGoogle Scholar
  11. [11]
    V. A. Zalgaller and G. A. Los, The solution of Malfatti’s problem, Journal of Mathematical Sciences, 72, No. 4, (1994), 3163–3177.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Marco Andreatta
    • 1
  • András Bezdek
    • 2
  • Jan P. Boroński
    • 3
  1. 1.Dipartimento di MatematicaUniversitá di TrentoTrentoItaly
  2. 2.MTA Rényi InstituteBudapestHungary
  3. 3.Mathematics & StatisticsAuburn UniversityAuburnUSA

Personalised recommendations