Advertisement

The Mathematical Intelligencer

, Volume 32, Issue 4, pp 54–58 | Cite as

Understanding Coin-Tossing

  • Jaroslaw Strzalko
  • Juliusz Grabski
  • Andrzej Stefanski
  • Przemyslaw Perlikowski
  • Tomasz Kapitaniak
Article

Keywords

Lyapunov Exponent Mathematical Intelligencer Nonholonomic System Basin Boundary Local Reference Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Feller: An Introduction to Probability: Theory and Examples, Wiley, New York, 1957.Google Scholar
  2. [2]
    E.T. Jaynes: Probability Theory: The Logic of Science, Cambridge University Press, Cambridge, 1996.Google Scholar
  3. [3]
    J.E. Kerrich: An Experimental Introduction to the Theory of Probability, J. Jorgensen, Copenhagen, 1946.Google Scholar
  4. [4]
    V.Z. Vulovic and R.E. Prange: Randomness of true coin toss. Physical Review, A33/1: 576 (1986).CrossRefGoogle Scholar
  5. [5]
    P. Diaconis, S. Holmes, and R. Montgomery: Dynamical Bias in the Coin Toss, SIAM Rev., 49, 211 (2007).CrossRefMathSciNetGoogle Scholar
  6. [6]
    T. Mizuguchi and M. Suwashita: Dynamics of coin tossing, Progress in Theoretical Physics Supplement, 161, 274 (2006).CrossRefGoogle Scholar
  7. [7]
    J.B. Keller: The probability of heads, Americam Mathematical Monthly, 93, 191 (1986).zbMATHCrossRefGoogle Scholar
  8. [8]
    Y. Zeng-Yuan and Z. Bin: On the sensitive dynamical system and the transition from the apparently deterministic process to the completely random process, Appl. Math. Mech., 6, 193 (1985).CrossRefGoogle Scholar
  9. [9]
    J. Strzalko, J Grabski, A. Stefanski, P. Perlikowski, and T. Kapitaniak: Dynamics of coin tossing is predictable, Phys. Rep., 469, 59 (2008).CrossRefMathSciNetGoogle Scholar
  10. [10]
    C. Grebogi, S.W. McDonald, E. Ott, and J.A. Yorke: Metamorphosis of basins boundaries, Phys. Lett., 99A, 415 (1983).CrossRefMathSciNetGoogle Scholar
  11. [11]
    B.B. Mandelbrot: Fractal Geometry of Nature, Freeman, San Francisco, 1982.zbMATHGoogle Scholar
  12. [12]
    J.C. Alexander, J.A. Yorke, Z. You, and I. Kan: Riddled basins, Int. J. Bifur. Chaos 2, 795 (1992).zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    J.C. Sommerer and E. Ott: Riddled basins, Nature 365, 136 (1993).CrossRefGoogle Scholar
  14. [14]
    E. Ott, J.C. Alexander, I. Kan, J.C. Sommerer, and J.A. Yorke: The transition to chaotic attractors with riddled basins, Physica D, 76, 384 (1994).zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    T. Kapitaniak, Yu. Maistrenko, A. Stefanski, and J. Brindley: Bifurcations from locally to globally riddled basins, Phys. Rev. E57, R6253 (1998).CrossRefMathSciNetGoogle Scholar
  16. [16]
    T. Kapitaniak: Uncertainty in coupled systems: Locally intermingled basins of attraction. Phys. Rev. E53, 53 (1996)CrossRefMathSciNetGoogle Scholar
  17. [17]
    H. Poincaré: Calcul de Probabilités, George Carre, Paris, 1896.zbMATHGoogle Scholar
  18. [18]
    E. Hopf: On causality, statistics and probability, Journal of Mathematical Physics, 13, 51 (1934).zbMATHGoogle Scholar
  19. [19]
    E. Hopf: Über die Bedeutung der WillkÜrlincken Funktionen fÜr die Wahrscheinlichkeitstheorie, Jahresbericht der Deutschen Mathematiker-Vereinigung, 46, 179 (1936).Google Scholar
  20. [20]
    J. Ford: How random is a coin toss, Physics Today, 40, 3 (1983).Google Scholar
  21. [21]
    H. Goldstein: Classical Mechanics, Addison-Wesley, Reading, 1950.Google Scholar
  22. [22]
    J.E. Marsden and T.S. Ratiu: Introduction to Mechanics and Symmetry, Springer, New York, 1994.zbMATHGoogle Scholar
  23. [23]
    J.I. Nejmark and N.A. Fufajev: Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, (American Mathematical Society, vol. 33, 1972).Google Scholar
  24. [24]
    D.B. Murray and S.W. Teare, Probability of a tossed coin landing on edge, Phys. Rev. E 48, 2547 (1993).CrossRefGoogle Scholar
  25. [25]
    T. Kapitaniak: Distribution of transient Lyapunov exponents of quasi-periodically forced systems, Prog. Theor. Phys., 93, 831 (1995).CrossRefGoogle Scholar
  26. [26]
    T. Kapitaniak: Generating strange nonchaotic attractors, Phys. Rev. E, 47, 1408 (1993).CrossRefGoogle Scholar
  27. [27]
    T. Tel: Transient chaos, J Phys A: Math Gen, 22, 691 (1991).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jaroslaw Strzalko
    • 1
  • Juliusz Grabski
    • 1
  • Andrzej Stefanski
    • 1
  • Przemyslaw Perlikowski
    • 2
  • Tomasz Kapitaniak
    • 1
  1. 1.Division of DynamicsTechnical University of LodzLodzPoland
  2. 2.Institute of MathematicsHumboldt University of BerlinBerlinGermany

Personalised recommendations