The Mathematical Intelligencer

, Volume 32, Issue 4, pp 54–58 | Cite as

Understanding Coin-Tossing

  • Jaroslaw Strzalko
  • Juliusz Grabski
  • Andrzej Stefanski
  • Przemyslaw Perlikowski
  • Tomasz Kapitaniak


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Feller: An Introduction to Probability: Theory and Examples, Wiley, New York, 1957.Google Scholar
  2. [2]
    E.T. Jaynes: Probability Theory: The Logic of Science, Cambridge University Press, Cambridge, 1996.Google Scholar
  3. [3]
    J.E. Kerrich: An Experimental Introduction to the Theory of Probability, J. Jorgensen, Copenhagen, 1946.Google Scholar
  4. [4]
    V.Z. Vulovic and R.E. Prange: Randomness of true coin toss. Physical Review, A33/1: 576 (1986).CrossRefGoogle Scholar
  5. [5]
    P. Diaconis, S. Holmes, and R. Montgomery: Dynamical Bias in the Coin Toss, SIAM Rev., 49, 211 (2007).CrossRefMathSciNetGoogle Scholar
  6. [6]
    T. Mizuguchi and M. Suwashita: Dynamics of coin tossing, Progress in Theoretical Physics Supplement, 161, 274 (2006).CrossRefGoogle Scholar
  7. [7]
    J.B. Keller: The probability of heads, Americam Mathematical Monthly, 93, 191 (1986).MATHCrossRefGoogle Scholar
  8. [8]
    Y. Zeng-Yuan and Z. Bin: On the sensitive dynamical system and the transition from the apparently deterministic process to the completely random process, Appl. Math. Mech., 6, 193 (1985).CrossRefGoogle Scholar
  9. [9]
    J. Strzalko, J Grabski, A. Stefanski, P. Perlikowski, and T. Kapitaniak: Dynamics of coin tossing is predictable, Phys. Rep., 469, 59 (2008).CrossRefMathSciNetGoogle Scholar
  10. [10]
    C. Grebogi, S.W. McDonald, E. Ott, and J.A. Yorke: Metamorphosis of basins boundaries, Phys. Lett., 99A, 415 (1983).CrossRefMathSciNetGoogle Scholar
  11. [11]
    B.B. Mandelbrot: Fractal Geometry of Nature, Freeman, San Francisco, 1982.MATHGoogle Scholar
  12. [12]
    J.C. Alexander, J.A. Yorke, Z. You, and I. Kan: Riddled basins, Int. J. Bifur. Chaos 2, 795 (1992).MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    J.C. Sommerer and E. Ott: Riddled basins, Nature 365, 136 (1993).CrossRefGoogle Scholar
  14. [14]
    E. Ott, J.C. Alexander, I. Kan, J.C. Sommerer, and J.A. Yorke: The transition to chaotic attractors with riddled basins, Physica D, 76, 384 (1994).MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    T. Kapitaniak, Yu. Maistrenko, A. Stefanski, and J. Brindley: Bifurcations from locally to globally riddled basins, Phys. Rev. E57, R6253 (1998).CrossRefMathSciNetGoogle Scholar
  16. [16]
    T. Kapitaniak: Uncertainty in coupled systems: Locally intermingled basins of attraction. Phys. Rev. E53, 53 (1996)CrossRefMathSciNetGoogle Scholar
  17. [17]
    H. Poincaré: Calcul de Probabilités, George Carre, Paris, 1896.MATHGoogle Scholar
  18. [18]
    E. Hopf: On causality, statistics and probability, Journal of Mathematical Physics, 13, 51 (1934).MATHGoogle Scholar
  19. [19]
    E. Hopf: Über die Bedeutung der WillkÜrlincken Funktionen fÜr die Wahrscheinlichkeitstheorie, Jahresbericht der Deutschen Mathematiker-Vereinigung, 46, 179 (1936).Google Scholar
  20. [20]
    J. Ford: How random is a coin toss, Physics Today, 40, 3 (1983).Google Scholar
  21. [21]
    H. Goldstein: Classical Mechanics, Addison-Wesley, Reading, 1950.Google Scholar
  22. [22]
    J.E. Marsden and T.S. Ratiu: Introduction to Mechanics and Symmetry, Springer, New York, 1994.MATHGoogle Scholar
  23. [23]
    J.I. Nejmark and N.A. Fufajev: Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, (American Mathematical Society, vol. 33, 1972).Google Scholar
  24. [24]
    D.B. Murray and S.W. Teare, Probability of a tossed coin landing on edge, Phys. Rev. E 48, 2547 (1993).CrossRefGoogle Scholar
  25. [25]
    T. Kapitaniak: Distribution of transient Lyapunov exponents of quasi-periodically forced systems, Prog. Theor. Phys., 93, 831 (1995).CrossRefGoogle Scholar
  26. [26]
    T. Kapitaniak: Generating strange nonchaotic attractors, Phys. Rev. E, 47, 1408 (1993).CrossRefGoogle Scholar
  27. [27]
    T. Tel: Transient chaos, J Phys A: Math Gen, 22, 691 (1991).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jaroslaw Strzalko
    • 1
  • Juliusz Grabski
    • 1
  • Andrzej Stefanski
    • 1
  • Przemyslaw Perlikowski
    • 2
  • Tomasz Kapitaniak
    • 1
  1. 1.Division of DynamicsTechnical University of LodzLodzPoland
  2. 2.Institute of MathematicsHumboldt University of BerlinBerlinGermany

Personalised recommendations