Advertisement

The Mathematical Intelligencer

, Volume 32, Issue 4, pp 5–15 | Cite as

The Bilinski Dodecahedron and Assorted Parallelohedra, Zonohedra, Monohedra, Isozonohedra, and Otherhedra

  • Branko Grünbaum
Article

Keywords

Mathematical Intelligencer Central Symmetry Combinatorial Type Regular Hexagon Spherical Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. D. Aleksandrov, Elementary deduction of the theorem about the center of a convex parallelohedron in 3 dimensions [In Russian]. Trudy fiz.-mat. Inst. Akad. Nauk im. Steklov 4 (1933), 89–99.Google Scholar
  2. [2]
    A. D. Alexandrov, Convex Polyhedra. Springer, Berlin 2005. Russian original: Moscow 1950; German translation: Berlin 1958.Google Scholar
  3. [3]
    S. Bilinski, Über die Rhombenisoeder. Glasnik Mat. Fiz. Astr. 15 (1960), 251–263. The quite detailed review by J. J. Burckhardt in Zentralblatt v. 99, p. 155 #15506, does not mention that this contains a correction of Fedorov’s claim. Coxeter in MR 24#A1644 mentions that “…the ‘second’ has never before been noticed” – but does not mention Fedorov.Google Scholar
  4. [4]
    M. Brückner, Vielecke und Vielflache. Teubner, Leipzig 1900.Google Scholar
  5. [5]
    J. J. Burckhardt, Über konvexe Körper mit Mittelpunkt. Vierteljschr. Naturforsch. Ges. ZÜrich 85 (1940), Beiblatt. Festschrift R. Fueter, pp. 149–154.Google Scholar
  6. [6]
    J. L. Cowley, Geometry Made Easy: A New and Methodical Explanation of the ELEMNENTS [sic] of GEOMETRY. Mechell, London 1752.Google Scholar
  7. [7]
    H. S. M. Coxeter, The classification of zonohedra by means of projective diagrams. J. de math. pures et appliq. 41 (1962), 137–156. Reprinted in: Twelve Geometric Essays, Southern Illinois Univ. Press, Carbondale, IL, 1968 = The Beauty of Geometry. Twelve Essays. Dover, Mineola, NY, 1999.Google Scholar
  8. [8]
    B. N. Delone, Sur la partition régulière de l’espace à 4 dimensions. Izv. Akad. Nauk SSSR Otdel Fiz.-Mat. Nauk 7 (1929), 79–110, 147–164.Google Scholar
  9. [9]
    E. S. Fedorov, Nachala Ucheniya o Figurah [In Russian] (= Elements of the theory of figures) Notices Imper. Petersburg Mineralog. Soc., 2nd ser., 24 (1885), 1–279. Republished by the Acad. Sci. USSR, Moscow 1953.Google Scholar
  10. [10]
    E. S. Fedorov, Elemente der Gestaltenlehre. Z. für Krystallographie und Mineralogie 21 (1893), 679–694.Google Scholar
  11. [11]
    E. v. Fedorow (E. S. Fedorov) Erwiderung auf die Bemerkungen zu E. v. Fedorow’s Elemente der Gestaltenlehre von Edmund Hess. Neues Jahrbuch für Mineralogie, Geologie und Paleontologie, 1894, part 2, pp. 86–88.Google Scholar
  12. [12]
    E. S. Fedorov, Reguläre Plan- und Raumtheilung. Abh. K. Bayer. Akademie der Wiss. Vol. 20 (1900), pp. 465–588 + 11 plates. Russian translation with additional comments: “Pravilnoe Delenie Ploskosti i Prostranstva” (Regular Partition of Plane and Space). Nauka, Leningrad 1979.Google Scholar
  13. [13]
    B. Grünbaum, An enduring error. Elemente der Math. 64 (2009), 89–101.zbMATHCrossRefGoogle Scholar
  14. [14]
    B. Grünbaum, Tilings by some nonconvex parallelohedra. Geombinatorics, 19 (2010), 100–107.Google Scholar
  15. [15]
    B. Grünbaum, Census of rhombic hexecontahedra (In preparation). Mentioned in [25].Google Scholar
  16. [16]
    B. Grünbaum and G. C. Shephard, Tilings and Patterns. Freeman, New York 1987.zbMATHGoogle Scholar
  17. [17]
    G. W. Hart, Dodecahedra. http://www.georgehart.com/virtual-polyhedra/dodecahedra.html (as of Oct. 15, 2009).
  18. [18]
    G. W. Hart, A color-matching dissection of the rhombic enneacontahedron. http://www.georgehart.com/dissect-re/dissect-re.htm (as of Oct. 15, 2009).
  19. [19]
    E. Hess, Ueber zwei Erweiterungen des Begriffs der regelmässigen Körper. Sitzungsberichte der Gesellschaft zur Beförderung der gesammten Naturwissenschaften zu Marburg, No. 1–2 (1875), pp. 1–20.Google Scholar
  20. [20]
    E. Hess, Bemerkungen zu E. v. Fedorow’s Elementen der Gestaltenlehre. Neues Jahrbuch für Mineralogie, Geologie und Paleontologie, 1894, part 1, pp. 197–199.Google Scholar
  21. [21]
    E. Hess, Weitere Bemerkungen zu E. v. Fedorow’s Elementen der Gestaltenlehre. Neues Jahrbuch für Mineralogie, Geologie und Paleontologie, 1894, part 2, pp. 88–90.Google Scholar
  22. [22]
    J. Kappraff, Connections. 2nd ed. World Scientific, River Edge, NJ 2001.zbMATHCrossRefGoogle Scholar
  23. [23]
    J. Kepler, Harmonice Mundi. Lincii 1619; English translation of Book 2: J. V. Field, Kepler’s Star Polyhedra, Vistas in Astronomy 23 (1979), 109–141.CrossRefMathSciNetGoogle Scholar
  24. [24]
    E. A. Lord, A. L. Mackay, and S. Ranganathan, New Geometries for New Materials. Cambridge Univ. Press 2006.zbMATHGoogle Scholar
  25. [25]
  26. [26]
    L. Michel, S. S. Ryshkov, and M. Senechal, An extension of Voronoï’s theorem on primitive parallelohedra. Europ. J. Combinatorics 16 (1995), 59–63.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    H. Minkowski, Allgemeine Lehrsätze über die konvexen Polyeder. Nachr. Gesell. Wiss. Göttingen, math.-phys. Kl. 1897, pp. 198–219 = Gesamm. Abh. von Hermann Minkowski, vol. 2, Leipzig 1911. Reprinted by Chelsea, New York 1967, pp. 103–121.Google Scholar
  28. [28]
    T. Ogawa, Three-dimensional Penrose transformation and the ideal quasicrystals. Science on Form: Proc. First Internat. Sympos. for Science on Form, S. Isihzaka et al., eds. KTK Publisher, Tokyo 1986, pp. 479–489.Google Scholar
  29. [29]
    M. O’Keeffe, 4-connected nets of packings of non-convex parallelohedra and related simple polyhedra. Zeitschrift für Kristallographie 214 (1999), 438–442.CrossRefMathSciNetGoogle Scholar
  30. [30]
    A. Schoenflies, Symmetrie und Struktur der Krystalle. Encykl. Math. Wissenschaften. Bd. 7. Krystallographie. Teil B, (1906), pp. 437–478.Google Scholar
  31. [31]
    M. Senechal and R. V. Galiulin, An Introduction to the Theory of Figures: the geometry of E. S. Fedorov. Structural Topology 10 (1984), 5–22.zbMATHMathSciNetGoogle Scholar
  32. [32]
    S. K. Stein, Factoring by subsets. Pacif. J. Math. 22 (1967), 523–541.zbMATHGoogle Scholar
  33. [33]
    S. K. Stein and S. Szabó, Algebra and Tiling. Math, Assoc. of America, Washington, DC 1994.Google Scholar
  34. [34]
    E. Steinitz, Polyeder und Raumeinteilungen, Enzykl. Math.Wiss. (Geometrie) 3 (Part 3 AB 12) (1922) 1–139.Google Scholar
  35. [35]
    S. Szabo, A star polyhedron that tiles but not as a fundamental domain. Intuitive Geometry (Siófok, 1985), Colloq. Math. Soc. János Bolyai, 48, North-Holland, Amsterdam 1987.Google Scholar
  36. [36]
    J. E. Taylor, Zonohedra and generalized zonohedra. Amer. Math. Monthly 99 (1992), 108–111.zbMATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    H. Unkelbach, Die kantensymmetrischen, gleichkantigen Polyeder. Deutsche Mathematik 5 (1940), 306–316. Reviewed by H. S. M. Coxeter in Math. Reviews 7 (1946), p.164.Google Scholar
  38. [38]
    G. Voronoï, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J. reine angew. Math. 134 (1908), 198–287; 135 (1909), 67–181.Google Scholar
  39. [39]
    R. Williams, Natural Structure. Eudaemon Press, Mooepark, CA 1972. Corrected reprint: The Geometrical Foundation of Natural Structure. Dover, NY 1979.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Washington 354350SeattleUSA

Personalised recommendations