The Mathematical Intelligencer

, Volume 31, Issue 3, pp 25–31 | Cite as

Geometry of Numbers in Vienna

  • Chuanming Zong
Mathematical Communities


Convex Body Mathematical Intelligencer Diophantine Approximation Lattice Packing Convex Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



For some useful suggestions and comments, I am grateful to Prof. Martin Henk, Prof. Marjorie Senechal and Dr. Iskander Aliev. For the kind permission to use the photos, I am grateful to the Mathematisches Forschungsinstitut Oberwolfach.


  1. [1]
    P.M. Gruber, Convex and Discrete Geometry, Springer-Verlag, Berlin, 2007.zbMATHGoogle Scholar
  2. [2]
    P.M. Gruber and C.G. Lekkerkerker, Geometry of Numbers, North-Holland, Amsterdam, 1987.Google Scholar
  3. [3]
    E. Hlawka, Nachruf auf Nikolaus Hofreiter, Monatsh. Math. 116 (1993), 263–273.Google Scholar
  4. [4]
    N. Hofreiter, Nachruf auf Philipp Furtwängler, Monatsh. Math. Phys. 49 (1940), 219–225.Google Scholar
  5. [5]
    A. Huber, Philipp Furtwängler, Nachruf, Jber. DMV. 50 (1941), 167–178.Google Scholar
  6. [6]
    C. Zong, Strange Phenomena in Convex and Discrete Geometry, Springer-Verlag, New York, 1996.zbMATHGoogle Scholar
  7. [7]
    C. Zong, Sphere Packings, Springer-Verlag, New York, 1999.zbMATHGoogle Scholar
  8. [8]
    C. Zong, The Cube: A Window to Convex and Discrete Geometry, Cambridge University Press, Cambridge, 2006.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations