Omics for the future in asthma


Asthma is a common, complex, multifaceted disease. It comprises multiple phenotypes, which might benefit from treatment with different types of innovative targeted therapies. Refining these phenotypes and understanding their underlying biological structure would help to apply precision medicine approaches. Using different omics methods, such as (epi)genomics, transcriptomics, proteomics, metabolomics, microbiomics, and exposomics, allowed to view and investigate asthma from diverse angles. Technological advancement led to a large increase in the application of omics studies in the asthma field. Although the use of omics technologies has reduced the gap between bench to bedside, several design and methodological challenges still need to be tackled before omics can be applied in asthma patient care. Collaborating under a centralized harmonized work frame (such as in consortia, under consistent methodologies) could help worldwide research teams to tackle these challenges. In this review, we discuss the transition of single biomarker research to multi-omics studies. In addition, we deliberate challenges such as the lack of standardization of sampling and analytical methodologies and validation of findings, which comes in between omics and personalized patient care. The future of omics in asthma is encouraging but not completely clear with some unanswered questions, which have not been adequately addressed before. Therefore, we highlight these questions and emphasize on the importance of fulfilling them.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2


  1. 1.

    The Global Asthma Report (2018) Auckland. Global Asthma Network, New Zealand, p 2018

  2. 2.

    Godar M, Blanchetot C, de Haard H, Lambrecht BN, Brusselle G (2018) Personalized medicine with biologics for severe type 2 asthma: current status and future prospects. MAbs 10:34–45

  3. 3.

    Chung KF (2016) Asthma phenotyping: a necessity for improved therapeutic precision and new targeted therapies. J Intern Med 279:192–204

  4. 4.

    Chung KF, Adcock IM (2019) Precision medicine for the discovery of treatable mechanisms in severe asthma. Allergy

  5. 5.

    Rackemann FM (1947) A working classification of asthma. Am J Med 3:601–606

  6. 6.

    Wenzel SE (2012) Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 18:716–725

  7. 7.

    Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, Wardlaw AJ, Green RH (2008) Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med 178:218–224

  8. 8.

    Siroux V, Basagana X, Boudier A, Pin I, Garcia-Aymerich J, Vesin A, Slama R, Jarvis D, Anto JM, Kauffmann F, Sunyer J (2011) Identifying adult asthma phenotypes using a clustering approach. Eur Respir J 38:310–317

  9. 9.

    Kuruvilla ME, Lee FE, Lee GB (2019) Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol 56:219–233

  10. 10.

    Svenningsen S, Nair P (2017) Asthma endotypes and an overview of targeted therapy for asthma. Front Med (Lausanne) 4:158

  11. 11.

    Kuo CS, Pavlidis S, Loza M, Baribaud F, Rowe A, Pandis I, Sousa A, Corfield J, Djukanovic R, Lutter R, Sterk PJ, Auffray C, Guo Y, Adcock IM, Chung KF (2017) T-helper cell type 2 (Th2) and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in U-BIOPRED. Eur Respir J 49

  12. 12.

    Tyler SR, Bunyavanich S (2019) Leveraging -omics for asthma endotyping. J Allergy Clin Immunol 144:13–23

  13. 13.

    Wenzel SE, Busse WW (2007) Severe asthma: lessons from the severe asthma research program. J Allergy Clin Immunol 119:14–21 quiz 2-3

  14. 14.

    Fleming L, Murray C, Bansal AT, Hashimoto S, Bisgaard H, Bush A, Frey U, Hedlin G, Singer F, van Aalderen WM, Vissing NH, Zolkipli Z, Selby A, Fowler S, Shaw D, Chung KF, Sousa AR, Wagers S, Corfield J, Pandis I, Rowe A, Formaggio E, Sterk PJ, Roberts G (2015) The burden of severe asthma in childhood and adolescence: results from the paediatric U-BIOPRED cohorts. Eur Respir J 46:1322–1333

  15. 15.

    Shaw DE, Sousa AR, Fowler SJ, Fleming LJ, Roberts G, Corfield J, Pandis I, Bansal AT, Bel EH, Auffray C, Compton CH, Bisgaard H, Bucchioni E, Caruso M, Chanez P, Dahlen B, Dahlen SE, Dyson K, Frey U, Geiser T, Gerhardsson de Verdier M, Gibeon D, Guo YK, Hashimoto S, Hedlin G, Jeyasingham E, Hekking PP, Higenbottam T, Horvath I, Knox AJ, Krug N, Erpenbeck VJ, Larsson LX, Lazarinis N, Matthews JG, Middelveld R, Montuschi P, Musial J, Myles D, Pahus L, Sandstrom T, Seibold W, Singer F, Strandberg K, Vestbo J, Vissing N, von Garnier C, Adcock IM, Wagers S, Rowe A, Howarth P, Wagener AH, Djukanovic R, Sterk PJ, Chung KF (2015) Clinical and inflammatory characteristics of the European U-BIOPRED adult severe asthma cohort. Eur Respir J 46:1308–1321

  16. 16.

    Bousquet J, Anto JM, Akdis M, Auffray C, Keil T, Momas I, Postma DS, Valenta R, Wickman M, Cambon-Thomsen A, Haahtela T, Lambrecht BN, Lodrup Carlsen KC, Koppelman GH, Sunyer J, Zuberbier T, Annesi-Maesano I, Arno A, Bindslev-Jensen C, De Carlo G, Forastiere F, Heinrich J, Kowalski ML, Maier D, Melen E, Palkonen S, Smit HA, Standl M, Wright J, Asarnoj A, Benet M, Ballardini N, Garcia-Aymerich J, Gehring U, Guerra S, Hohman C, Kull I, Lupinek C, Pinart M, Skrindo I, Westman M, Smagghe D, Akdis C, Albang R, Anastasova V, Anderson N, Bachert C, Ballereau S, Ballester F, Basagana X, Bedbrook A, Bergstrom A, von Berg A, Brunekreef B, Burte E, Carlsen KH, Chatzi L, Coquet JM, Curin M, Demoly P, Eller E, Fantini MP, Gerhard B, Hammad H, von Hertzen L, Hovland V, Jacquemin B, Just J, Keller T, Kerkhof M, Kiss R, Kogevinas M, Koletzko S, Lau S, Lehmann I, Lemonnier N, McEachan R, Makela M, Mestres J, Minina E, Mowinckel P, Nadif R, Nawijn M, Oddie S, Pellet J, Pin I, Porta D, Ranciere F, Rial-Sebbag A, Saeys Y, Schuijs MJ, Siroux V, Tischer CG, Torrent M, Varraso R, De Vocht J, Wenger K, Wieser S, Xu C (2016) Paving the way of systems biology and precision medicine in allergic diseases: the MeDALL success story: mechanisms of the development of ALLergy; EU FP7-CP-IP; project no: 261357; 2010-2015. Allergy 71:1513–1525

  17. 17.

    Ferreira MA, Vonk JM, Baurecht H, Marenholz I, Tian C, Hoffman JD, Helmer Q, Tillander A, Ullemar V, van Dongen J, Lu Y, Ruschendorf F, Esparza-Gordillo J, Medway CW, Mountjoy E, Burrows K, Hummel O, Grosche S, Brumpton BM, Witte JS, Hottenga JJ, Willemsen G, Zheng J, Rodriguez E, Hotze M, Franke A, Revez JA, Beesley J, Matheson MC, Dharmage SC, Bain LM, Fritsche LG, Gabrielsen ME, Balliu B, Nielsen JB, Zhou W, Hveem K, Langhammer A, Holmen OL, Loset M, Abecasis GR, Willer CJ, Arnold A, Homuth G, Schmidt CO, Thompson PJ, Martin NG, Duffy DL, Novak N, Schulz H, Karrasch S, Gieger C, Strauch K, Melles RB, Hinds DA, Hubner N, Weidinger S, Magnusson PKE, Jansen R, Jorgenson E, Lee YA, Boomsma DI, Almqvist C, Karlsson R, Koppelman GH, Paternoster L (2017) Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Genet 49:1752–1757

  18. 18.

    Ferreira MAR, Vonk JM, Baurecht H, Marenholz I, Tian C, Hoffman JD, Helmer Q, Tillander A, Ullemar V, Lu Y, Ruschendorf F, Hinds DA, Hubner N, Weidinger S, Magnusson PKE, Jorgenson E, Lee YA, Boomsma DI, Karlsson R, Almqvist C, Koppelman GH, Paternoster L (2019) Eleven loci with new reproducible genetic associations with allergic disease risk. J Allergy Clin Immunol 143:691–699

  19. 19.

    Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, von Mutius E, Farrall M, Lathrop M, Cookson W (2010) A large-scale, consortium-based genome wide association study of asthma. N Engl J Med 363:1211–1221

  20. 20.

    Halapi E, Gudbjartsson DF, Jonsdottir GM, Bjornsdottir US, Thorleifsson G, Helgadottir H, Williams C, Koppelman GH, Heinzmann A, Boezen HM, Jonasdottir A, Blondal T, Gudjonsson SA, Jonasdottir A, Thorlacius T, Henry AP, Altmueller J, Krueger M, Shin HD, Uh S-T, Cheong HS, Jonsdottir B, Ludviksson BR, Ludviksdottir D, Gislason D, Park C-S, Deichmann K, Thompson PJ, Wjst M, Hall IP, Postma DS, Gislason T, Kong A, Jonsdottir I, Thorsteinsdottir U, Stefansson K (2010) A sequence variant on 17q21 is associated with age at onset and severity of asthma. European journal of human genetics : EJHG 18:902–908

  21. 21.

    Farzan N, Vijverberg SJ, Hernandez-Pacheco N, Bel EHD, Berce V, Bønnelykke K, Bisgaard H, Burchard EG, Canino G, Celedón JC, Chew FT, Chiang WC, Cloutier MM, Forno E, Francis B, Hawcutt DB, Herrera-Luis E, Kabesch M, Karimi L, Melén E, Mukhopadhyay S, Merid SK, Palmer CN, Pino-Yanes M, Pirmohamed M, Potočnik U, Repnik K, Schieck M, Sevelsted A, Sio YY, Smyth RL, Soares P, Söderhäll C, Tantisira KG, Tavendale R, Tse SM, Turner S, Verhamme KM, Maitland-van der Zee AH (2018) 17q21 variant increases the risk of exacerbations in asthmatic children despite inhaled corticosteroids use. Allergy 73:2083–2088

  22. 22.

    Vijverberg SJH, Farzan N, Slob EMA, Neerincx AH, Maitland-van der Zee AH (2018) Treatment response heterogeneity in asthma: the role of genetic variation. Expert Rev Respir Med 12:55–65

  23. 23.

    Slob EMA, Vijverberg SJH, Palmer CNA, Zazuli Z, Farzan N, Oliveri NMB, Pijnenburg MW, Koppelman GH, Maitland-van der Zee AH (2018) Pharmacogenetics of inhaled long-acting beta2-agonists in asthma: a systematic review. Pediatr Allergy Immunol 29:705–714

  24. 24.

    Turner S, Francis B, Vijverberg S, Pino-Yanes M, Maitland-van der Zee AH, Basu K, Bignell L, Mukhopadhyay S, Tavendale R, Palmer C, Hawcutt D, Pirmohamed M, Burchard EG, Lipworth B (2016) Childhood asthma exacerbations and the Arg16 beta2-receptor polymorphism: a meta-analysis stratified by treatment. J Allergy Clin Immunol (138):107–13.e5

  25. 25.

    Vijverberg SJ, Pijnenburg MW, Hovels AM, Koppelman GH, Maitland-van der Zee AH (2017) The need for precision medicine clinical trials in childhood asthma: rationale and design of the PUFFIN trial. Pharmacogenomics 18:393–401

  26. 26.

    Hawcutt DB, Francis B, Carr DF, Jorgensen AL, Yin P, Wallin N, O'Hara N, Zhang EJ, Bloch KM, Ganguli A, Thompson B, McEvoy L, Peak M, Crawford AA, Walker BR, Blair JC, Couriel J, Smyth RL, Pirmohamed M (2018) Susceptibility to corticosteroid-induced adrenal suppression: a genome-wide association study. Lancet Respir Med 6:442–450

  27. 27.

    Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13:97–109

  28. 28.

    Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, Reese SE, Markunas CA, Richmond RC, Xu CJ, Küpers LK, Oh SS, Hoyo C, Gruzieva O, Söderhäll C, Salas LA, Baïz N, Zhang H, Lepeule J, Ruiz C, Ligthart S, Wang T, Taylor JA, Duijts L, Sharp GC, Jankipersadsing SA, Nilsen RM, Vaez A, Fallin MD, Hu D, Litonjua AA, Fuemmeler BF, Huen K, Kere J, Kull I, Munthe-Kaas MC, Gehring U, Bustamante M, Saurel-Coubizolles MJ, Quraishi BM, Ren J, Tost J, Gonzalez JR, Peters MJ, Håberg SE, Xu Z, van Meurs J, Gaunt TR, Kerkhof M, Corpeleijn E, Feinberg AP, Eng C, Baccarelli AA, Benjamin Neelon SE, Bradman A, Merid SK, Bergström A, Herceg Z, Hernandez-Vargas H, Brunekreef B, Pinart M, Heude B, Ewart S, Yao J, Lemonnier N, Franco OH, Wu MC, Hofman A, McArdle W, van der Vlies P, Falahi F, Gillman MW, Barcellos LF, Kumar A, Wickman M, Guerra S, Charles MA, Holloway J, Auffray C, Tiemeier HW, Smith GD, Postma D, Hivert MF, Eskenazi B, Vrijheid M, Arshad H, Antó JM, Dehghan A, Karmaus W, Annesi-Maesano I, Sunyer J, Ghantous A, Pershagen G, Holland N, Murphy SK, DeMeo D, Burchard EG, Ladd-Acosta C, Snieder H, Nystad W, Koppelman GH, Relton CL, Jaddoe VW, Wilcox A, Melén E, London SJ (2016) DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet 98:680–696

  29. 29.

    Gruzieva O, Xu CJ, Breton CV, Annesi-Maesano I, Anto JM, Auffray C, Ballereau S, Bellander T, Bousquet J, Bustamante M, Charles MA, de Kluizenaar Y, den Dekker HT, Duijts L, Felix JF, Gehring U, Guxens M, Jaddoe VV, Jankipersadsing SA, Merid SK, Kere J, Kumar A, Lemonnier N, Lepeule J, Nystad W, Page CM, Panasevich S, Postma D, Slama R, Sunyer J, Soderhall C, Yao J, London SJ, Pershagen G, Koppelman GH, Melen E (2017) Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ Health Perspect 125:104–110

  30. 30.

    Miller RL, Ho SM (2008) Environmental epigenetics and asthma: current concepts and call for studies. Am J Respir Crit Care Med 177:567–573

  31. 31.

    Stokholm J, Chawes BL, Vissing N, Bonnelykke K, Bisgaard H (2018) Cat exposure in early life decreases asthma risk from the 17q21 high-risk variant. J Allergy Clin Immunol 141:1598–1606

  32. 32.

    Reese SE, Xu CJ, den Dekker HT, Lee MK, Sikdar S, Ruiz-Arenas C, Merid SK, Rezwan FI, Page CM, Ullemar V, Melton PE, Oh SS, Yang IV, Burrows K, Soderhall C, Jima DD, Gao L, Arathimos R, Kupers LK, Wielscher M, Rzehak P, Lahti J, Laprise C, Madore AM, Ward J, Bennett BD, Wang T, Bell DA, Vonk JM, Haberg SE, Zhao S, Karlsson R, Hollams E, Hu D, Richards AJ, Bergstrom A, Sharp GC, Felix JF, Bustamante M, Gruzieva O, Maguire RL, Gilliland F, Baiz N, Nohr EA, Corpeleijn E, Sebert S, Karmaus W, Grote V, Kajantie E, Magnus MC, Ortqvist AK, Eng C, Liu AH, Kull I, Jaddoe VWV, Sunyer J, Kere J, Hoyo C, Annesi-Maesano I, Arshad SH, Koletzko B, Brunekreef B, Binder EB, Raikkonen K, Reischl E, Holloway JW, Jarvelin MR, Snieder H, Kazmi N, Breton CV, Murphy SK, Pershagen G, Anto JM, Relton CL, Schwartz DA, Burchard EG, Huang RC, Nystad W, Almqvist C, Henderson AJ, Melen E, Duijts L, Koppelman GH, London SJ. 2018. Epigenome-wide meta-analysis of DNA methylation and childhood asthma. J Allergy Clin Immunol

  33. 33.

    Tost J (2018) A translational perspective on epigenetics in allergic diseases. J Allergy Clin Immunol 142:715–726

  34. 34.

    Yang IV, Pedersen BS, Liu AH, O'Connor GT, Pillai D, Kattan M, Misiak RT, Gruchalla R, Szefler SJ, Khurana Hershey GK, Kercsmar C, Richards A, Stevens AD, Kolakowski CA, Makhija M, Sorkness CA, Krouse RZ, Visness C, Davidson EJ, Hennessy CE, Martin RJ, Togias A, Busse WW, Schwartz DA (2017) The nasal methylome and childhood atopic asthma. J Allergy Clin Immunol 139:1478–1488

  35. 35.

    Nicodemus-Johnson J, Myers RA, Sakabe NJ, Sobreira DR, Hogarth DK, Naureckas ET, Sperling AI, Solway J, White SR, Nobrega MA, Nicolae DL, Gilad Y, Ober C (2016) DNA methylation in lung cells is associated with asthma endotypes and genetic risk. JCI Insight 1:e90151

  36. 36.

    Clifford RL, Patel JK, John AE, Tatler AL, Mazengarb L, Brightling CE, Knox AJ (2015) CXCL8 histone H3 acetylation is dysfunctional in airway smooth muscle in asthma: regulation by BET. Am J Physiol Lung Cell Mol Physiol 308:L962–L972

  37. 37.

    Hou X, Wan H, Ai X, Shi Y, Ni Y, Tang W, Shi G (2016) Histone deacetylase inhibitor regulates the balance of Th17/Treg in allergic asthma. Clin Respir J 10:371–379

  38. 38.

    Clifford RL, John AE, Brightling CE, Knox AJ (2012) Abnormal histone methylation is responsible for increased vascular endothelial growth factor 165a secretion from airway smooth muscle cells in asthma. J Immunol 189:819–831

  39. 39.

    Berube JC, Bosse Y (2014) Future clinical implications emerging from recent genome-wide expression studies in asthma. Expert Rev Clin Immunol 10:985–1004

  40. 40.

    Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X (2014) Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One 9:e78644

  41. 41.

    GTEx Consortium (2015) Human genomics. The genotype-tissue expression (GTEx) pilot analysis: multi tissue gene regulation in humans. Science 348:648–660

  42. 42.

    Singhania A, Wallington JC, Smith CG, Horowitz D, Staples KJ, Howarth PH, Gadola SD, Djukanovic R, Woelk CH, Hinks TSC (2018) Multi tissue transcriptomics delineates the diversity of airway T cell functions in asthma. Am J Respir Cell Mol Biol 58:261–270

  43. 43.

    Bigler J, Boedigheimer M, Schofield JPR, Skipp PJ, Corfield J, Rowe A, Sousa AR, Timour M, Twehues L, Hu X, Roberts G, Welcher AA, Yu W, Lefaudeux D, Meulder B, Auffray C, Chung KF, Adcock IM, Sterk PJ, Djukanovic R (2017) A severe asthma disease signature from gene expression profiling of peripheral blood from U-BIOPRED cohorts. Am J Respir Crit Care Med 195:1311–1320

  44. 44.

    Lefaudeux D, De Meulder B, Loza MJ, Peffer N, Rowe A, Baribaud F, Bansal AT, Lutter R, Sousa AR, Corfield J, Pandis I, Bakke PS, Caruso M, Chanez P, Dahlen SE, Fleming LJ, Fowler SJ, Horvath I, Krug N, Montuschi P, Sanak M, Sandstrom T, Shaw DE, Singer F, Sterk PJ, Roberts G, Adcock IM, Djukanovic R, Auffray C, Chung KF (2017) U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol 139:1797–1807

  45. 45.

    Modena BD, Bleecker ER, Busse WW, Erzurum SC, Gaston BM, Jarjour NN, Meyers DA, Milosevic J, Tedrow JR, Wu W, Kaminski N, Wenzel SE (2017) Gene expression correlated with severe asthma characteristics reveals heterogeneous mechanisms of severe disease. Am J Respir Crit Care Med 195:1449–1463

  46. 46.

    Hekking PP, Loza MJ, Pavlidis S, de Meulder B, Lefaudeux D, Baribaud F, Auffray C, Wagener AH, Brinkman PI, Lutter RI, Bansal AT, Sousa AR, Bates SA, Pandis Y, Fleming LJ, Shaw DE, Fowler SJ, Guo Y, Meiser A, Sun K, Corfield J, Howarth PH, Bel EH, Adcock IM, Chung KF, Djukanovic R, Sterk PJ (2018) Pathway discovery using transcriptomic profiles in adult-onset severe asthma. J Allergy Clin Immunol 141:1280–1290

  47. 47.

    Bosse Y (2013) Genome-wide expression quantitative trait loci analysis in asthma. Curr Opin Allergy Clin Immunol 13:487–494

  48. 48.

    Hao K, Bosse Y, Nickle DC, Pare PD, Postma DS, Laviolette M, Sandford A, Hackett TL, Daley D, Hogg JC, Elliott WM, Couture C, Lamontagne M, Brandsma CA, van den Berge M, Koppelman G, Reicin AS, Nicholson DW, Malkov V, Derry JM, Suver C, Tsou JA, Kulkarni A, Zhang C, Vessey R, Opiteck GJ, Curtis SP, Timens W, Sin DD (2012) Lung eQTLs to help reveal the molecular underpinnings of asthma. PLoS Genet 8:e1003029

  49. 49.

    Nieuwenhuis MA, Siedlinski M, van den Berge M, Granell R, Li X, Niens M, van der Vlies P, Altmuller J, Nurnberg P, Kerkhof M, van Schayck OC, Riemersma RA, van der Molen T, de Monchy JG, Bosse Y, Sandford A, Bruijnzeel-Koomen CA, Gerth van Wijk R, Ten Hacken NH, Timens W, Boezen HM, Henderson J, Kabesch M, Vonk JM, Postma DS, Koppelman GH (2016) Combining genome wide association study and lung eQTL analysis provides evidence for novel genes associated with asthma. Allergy 71:1712–1720

  50. 50.

    Kanazawa J, Kitazawa H, Masuko H, Yatagai Y, Sakamoto T, Kaneko Y, Iijima H, Naito T, Saito T, Noguchi E, Konno S, Nishimura M, Hirota T, Tamari M, Hizawa N (2019) A cis-eQTL allele regulating reduced expression of CHI3L1 is associated with late-onset adult asthma in Japanese cohorts. BMC Med Genet 20:58

  51. 51.

    Altelaar AF, Munoz J, Heck AJ (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14:35–48

  52. 52.

    Fujii K, Nakamura H, Nishimura T (2017) Recent mass spectrometry-based proteomics for biomarker discovery in lung cancer, COPD, and asthma. Expert Rev Proteomics 14:373–386

  53. 53.

    Yu X, Schneiderhan-Marra N, Joos TO (2010) Protein microarrays for personalized medicine. Clin Chem 56:376–387

  54. 54.

    Brasier AR, Victor S, Ju H, Busse WW, Curran-Everett D, Bleecker E, Castro M, Chung KF, Gaston B, Israel E, Wenzel SE, Erzurum SC, Jarjour NN, Calhoun WJ (2010) Predicting intermediate phenotypes in asthma using bronchoalveolar lavage-derived cytokines. Clin Transl Sci 3:147–157

  55. 55.

    Brasier AR, Victor S, Boetticher G, Ju H, Lee C, Bleecker ER, Castro M, Busse WW, Calhoun WJ (2008) Molecular phenotyping of severe asthma using pattern recognition of bronchoalveolar lavage-derived cytokines. J Allergy Clin Immunol (121):30–7.e6

  56. 56.

    Hastie AT, Steele C, Dunaway CW, Moore WC, Rector BM, Ampleford E, Li H, Denlinger LC, Jarjour N, Meyers DA, Bleecker ER (2018) Complex association patterns for inflammatory mediators in induced sputum from subjects with asthma. Clin Exp Allergy 48:787–797

  57. 57.

    Takahashi K, Pavlidis S, Ng Kee Kwong F, Hoda U, Rossios C, Sun K, Loza M, Baribaud F, Chanez P, Fowler SJ, Horvath I, Montuschi P, Singer F, Musial J, Dahlen B, Dahlen SE, Krug N, Sandstrom T, Shaw DE, Lutter R, Bakke P, Fleming LJ, Howarth PH, Caruso M, Sousa AR, Corfield J, Auffray C, De Meulder B, Lefaudeux D, Djukanovic R, Sterk PJ, Guo Y, Adcock IM, Chung KF (2018) Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: an exploratory analysis. Eur Respir J 51

  58. 58.

    Schofield JPR, Burg D, Nicholas B, Strazzeri F, Brandsma J, Staykova D, Folisi C, Bansal AT, Xian Y, Guo Y, Rowe A, Corfield J, Wilson S, Ward J, Lutter R, Shaw DE, Bakke PS, Caruso M, Dahlen SE, Fowler SJ, Horvath I, Howarth P, Krug N, Montuschi P, Sanak M, Sandstrom T, Sun K, Pandis I, Riley J, Auffray C, De Meulder B, Lefaudeux D, Sousa AR, Adcock IM, Chung KF, Sterk PJ, Skipp PJ, Djukanovic R (2019) Stratification of asthma phenotypes by airway proteomic signatures. J Allergy Clin Immunol

  59. 59.

    Teran LM, Montes-Vizuet R, Li X, Franz T (2015) Respiratory proteomics: from descriptive studies to personalized medicine. J Proteome Res 14:38–50

  60. 60.

    Luxon BA (2014) Metabolomics in asthma. Adv Exp Med Biol 795:207–220

  61. 61.

    Izquierdo-Garcia JL, Peces-Barba G, Heili S, Diaz R, Want E, Ruiz-Cabello J (2011) Is NMR-based metabolomic analysis of exhaled breath condensate accurate? Eur Respir J 37:468–470

  62. 62.

    Nobakht MGBF, Aliannejad R, Rezaei-Tavirani M, Taheri S, Oskouie AA (2015) The metabolomics of airway diseases, including COPD, asthma and cystic fibrosis. Biomarkers 20:5–16

  63. 63.

    Kelly RS, Dahlin A, McGeachie MJ, Qiu W, Sordillo J, Wan ES, Wu AC, Lasky-Su J (2017) Asthma metabolomics and the potential for integrative omics in research and the clinic. Chest 151:262–277

  64. 64.

    Bos LD, Sterk PJ, Fowler SJ (2016) Breathomics in the setting of asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 138:970–976

  65. 65.

    Neerincx AH, Vijverberg SJH, Bos LDJ, Brinkman P, van der Schee MP, de Vries R, Sterk PJ, Maitland-van der Zee AH (2017) Breathomics from exhaled volatile organic compounds in pediatric asthma. Pediatr Pulmonol 52:1616–1627

  66. 66.

    Fitzgerald JE, Fenniri H (2016) Biomimetic cross-reactive sensor arrays: prospects in biodiagnostics. RSC Adv 6:80468–80484

  67. 67.

    de Vries R, Dagelet YWF, Spoor P, Snoey E, Jak PMC, Brinkman P, Dijkers E, Bootsma SK, Elskamp F, de Jongh FHC, Haarman EG, In 't Veen J, Maitland-van der Zee AH, Sterk PJ. (2018) Clinical and inflammatory phenotyping by breathomics in chronic airway diseases irrespective of the diagnostic label. Eur Respir J 51

  68. 68.

    Brinkman P, Wagener AH, Hekking PP, Bansal AT, Maitland-van der Zee AH, Wang Y, Weda H, Knobel HH, Vink TJ, Rattray NJ, D'Amico A, Pennazza G, Santonico M, Lefaudeux D, De Meulder B, Auffray C, Bakke PS, Caruso M, Chanez P, Chung KF, Corfield J, Dahlen SE, Djukanovic R, Geiser T, Horvath I, Krug N, Musial J, Sun K, Riley JH, Shaw DE, Sandstrom T, Sousa AR, Montuschi P, Fowler SJ, Sterk PJ (2018) Identification and prospective stability of electronic nose (eNose)-derived inflammatory phenotypes in patients with severe asthma. J Allergy Clin Immunol

  69. 69.

    de Vries R, Brinkman P, van der Schee MP, Fens N, Dijkers E, Bootsma SK, de Jongh FH, Sterk PJ (2015) Integration of electronic nose technology with spirometry: validation of a new approach for exhaled breath analysis. J Breath Res 9:046001

  70. 70.

    Fens N, van der Schee MP, Brinkman P, Sterk PJ (2013) Exhaled breath analysis by electronic nose in airways disease. Established issues and key questions Clin Exp Allergy 43:705–715

  71. 71.

    Laudadio I, Fulci V, Palone F, Stronati L, Cucchiara S, Carissimi C (2018) Quantitative assessment of shotgun metagenomics and 16S rDNA amplicon sequencing in the study of human gut microbiome. Omics 22:248–254

  72. 72.

    Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A, Poulter L, Pachter L, Moffatt MF, Cookson WO (2010) Disordered microbial communities in asthmatic airways. PLoS One 5:e8578

  73. 73.

    Huang YJ, Nelson CE, Brodie EL, Desantis TZ, Baek MS, Liu J, Woyke T, Allgaier M, Bristow J, Wiener-Kronish JP, Sutherland ER, King TS, Icitovic N, Martin RJ, Calhoun WJ, Castro M, Denlinger LC, Dimango E, Kraft M, Peters SP, Wasserman SI, Wechsler ME, Boushey HA, Lynch SV (2011) Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol (127):372–81.e1-3

  74. 74.

    Marri PR, Stern DA, Wright AL, Billheimer D, Martinez FD. 2013. Asthma-associated differences in microbial composition of induced sputum. J Allergy Clin Immunol 131: 346-52.e1-3

  75. 75.

    Park H, Shin JW, Park SG, Kim W (2014) Microbial communities in the upper respiratory tract of patients with asthma and chronic obstructive pulmonary disease. PLoS One 9:e109710

  76. 76.

    Huang YJ, Nariya S, Harris JM, Lynch SV, Choy DF, Arron JR, Boushey H (2015) The airway microbiome in patients with severe asthma: associations with disease features and severity. J Allergy Clin Immunol 136:874–884

  77. 77.

    Zhang Q, Cox M, Liang Z, Brinkmann F, Cardenas PA, Duff R, Bhavsar P, Cookson W, Moffatt M, Chung KF (2016) Airway microbiota in severe asthma and relationship to asthma severity and phenotypes. PLoS One 11:e0152724

  78. 78.

    Lee JJ, Kim SH, Lee MJ, Kim BK, Song WJ, Park HW, Cho SH, Hong SJ, Chang YS, Kim BS (2018) Different upper airway microbiome and their functional genes associated with asthma in young adults and elderly individuals. Allergy

  79. 79.

    Taylor SL, Leong LEX, Choo JM, Wesselingh S, Yang IA, Upham JW, Reynolds PN, Hodge S, James AL, Jenkins C, Peters MJ, Baraket M, Marks GB, Gibson PG, Simpson JL, Rogers GB (2018) Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology. J Allergy Clin Immunol (141):94–103.e15

  80. 80.

    Yang X, Li H, Ma Q, Zhang Q, Wang C (2018) Neutrophilic asthma is associated with increased airway bacterial burden and disordered community composition. Biomed Res Int 2018:9230234

  81. 81.

    Simpson JL, Daly J, Baines KJ, Yang IA, Upham JW, Reynolds PN, Hodge S, James AL, Hugenholtz P, Willner D, Gibson PG (2016) Airway dysbiosis: Haemophilus influenzae and Tropheryma in poorly controlled asthma. Eur Respir J 47:792–800

  82. 82.

    Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62:67–72

  83. 83.

    Protudjer JL, Sevenhuysen GP, Ramsey CD, Kozyrskyj AL, Becker AB (2012) Low vegetable intake is associated with allergic asthma and moderate-to-severe airway hyperresponsiveness. Pediatr Pulmonol 47:1159–1169

  84. 84.

    Roduit C, Frei R, Ferstl R, Loeliger S, Westermann P, Rhyner C, Schiavi E, Barcik W, Rodriguez-Perez N, Wawrzyniak M, Chassard C, Lacroix C, Schmausser-Hechfellner E, Depner M, von Mutius E, Braun-Fahrlander C, Karvonen AM, Kirjavainen PV, Pekkanen J, Dalphin JC, Riedler J, Akdis C, Lauener R, O'Mahony L (2019) High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy 74:799–809

  85. 85.

    Waldecker M, Kautenburger T, Daumann H, Busch C, Schrenk D (2008) Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem 19:587–593

  86. 86.

    Qin Y, Wade PA (2018) Crosstalk between the microbiome and epigenome: messages from bugs. J Biochem 163:105–112

  87. 87.

    Royce SG, Karagiannis TC (2012) Histone deacetylases and their role in asthma. J Asthma 49:121–128

  88. 88.

    Royce SG, Karagiannis TC (2014) Histone deacetylases and their inhibitors: new implications for asthma and chronic respiratory conditions. Curr Opin Allergy Clin Immunol 14:44–48

  89. 89.

    Abdel-Aziz MI, Vijverberg SJH, Neerincx AH, Kraneveld AD, Maitland-van der Zee AH (2019) The crosstalk between microbiome and asthma: exploring associations and challenges. Clin Exp Allergy 49:1067–1086

  90. 90.

    Frati F, Salvatori C, Incorvaia C, Bellucci A, Di Cara G, Marcucci F, Esposito S (2018) The role of the microbiome in asthma: the gut(−)lung axis. Int J Mol Sci 20

  91. 91.

    Castro-Nallar E, Shen Y, Freishtat RJ, Perez-Losada M, Manimaran S, Liu G, Johnson WE, Crandall KA (2015) Integrating microbial and host transcriptomics to characterize asthma-associated microbial communities. BMC Med Genet 8:50

  92. 92.

    Perez-Losada M, Castro-Nallar E, Bendall ML, Freishtat RJ, Crandall KA (2015) Dual transcriptomic profiling of host and microbiota during health and disease in pediatric asthma. PLoS One 10:e0131819

  93. 93.

    Cockcroft DW (2014) Allergen-induced asthma. Can Respir J 21:279–282

  94. 94.

    Jeong A, Fiorito G, Keski-Rahkonen P, Imboden M, Kiss A, Robinot N, Gmuender H, Vlaanderen J, Vermeulen R, Kyrtopoulos S, Herceg Z, Ghantous A, Lovison G, Galassi C, Ranzi A, Krogh V, Grioni S, Agnoli C, Sacerdote C, Mostafavi N, Naccarati A, Scalbert A, Vineis P, Probst-Hensch N (2018) Perturbation of metabolic pathways mediates the association of air pollutants with asthma and cardiovascular diseases. Environ Int 119:334–345

  95. 95.

    Sbihi H, Boutin RCT, Cutler C, Suen M, Finlay BB, Turvey SE (2019) Thinking bigger: how early life environmental exposures shape the gut microbiome and influence the development of asthma and allergic disease. Allergy

  96. 96.

    Louisias M, Ramadan A, Naja AS, Phipatanakul W (2019) The effects of the environment on asthma disease activity. Immunol Allergy Clin N Am 39:163–175

  97. 97.

    Vineis P, Chadeau-Hyam M, Gmuender H, Gulliver J, Herceg Z, Kleinjans J, Kogevinas M, Kyrtopoulos S, Nieuwenhuijsen M, Phillips DH, Probst-Hensch N, Scalbert A, Vermeulen R, Wild CP (2017) The exposome in practice: design of the EXPOsOMICS project. Int J Hyg Environ Health 220:142–151

  98. 98.

    Bose S, Rosa MJ, Mathilda Chiu YH, Leon Hsu HH, Di Q, Lee A, Kloog I, Wilson A, Schwartz J, Wright RO, Morgan WJ, Coull BA, Wright RJ (2018) Prenatal nitrate air pollution exposure and reduced child lung function: timing and fetal sex effects. Environ Res 167:591–597

  99. 99.

    Gref A, Merid SK, Gruzieva O, Ballereau S, Becker A, Bellander T, Bergstrom A, Bosse Y, Bottai M, Chan-Yeung M, Fuertes E, Ierodiakonou D, Jiang R, Joly S, Jones M, Kobor MS, Korek M, Kozyrskyj AL, Kumar A, Lemonnier N, MacIntyre E, Menard C, Nickle D, Obeidat M, Pellet J, Standl M, Saaf A, Soderhall C, Tiesler CMT, van den Berge M, Vonk JM, Vora H, Xu CJ, Anto JM, Auffray C, Brauer M, Bousquet J, Brunekreef B, Gauderman WJ, Heinrich J, Kere J, Koppelman GH, Postma D, Carlsten C, Pershagen G, Melen E (2017) Genome-wide interaction analysis of air pollution exposure and childhood asthma with functional follow-up. Am J Respir Crit Care Med 195:1373–1383

  100. 100.

    Mariani J, Favero C, Spinazze A, Cavallo DM, Carugno M, Motta V, Bonzini M, Cattaneo A, Pesatori AC, Bollati V (2018) Short-term particulate matter exposure influences nasal microbiota in a population of healthy subjects. Environ Res 162:119–126

  101. 101.

    Guilleminault L, Williams EJ, Scott HA, Berthon BS, Jensen M, Wood LG (2017) Diet and asthma: is it time to adapt our message? Nutrients 9

  102. 102.

    Shi D, Wang D, Meng Y, Chen J, Mu G, Chen W (2019) Maternal vitamin D intake during pregnancy and risk of asthma and wheeze in children: a systematic review and meta-analysis of observational studies. J Matern Fetal Neonatal Med:1–201

  103. 103.

    Ahmadizar F, Vijverberg SJH, Arets HGM, de Boer A, Turner S, Devereux G, Arabkhazaeli A, Soares P, Mukhopadhyay S, Garssen J, Palmer CNA, de Jongste JC, Jaddoe VWV, Duijts L, van Meel ER, Kraneveld AD, Maitland-van der Zee AH (2017) Early life antibiotic use and the risk of asthma and asthma exacerbations in children. Pediatr Allergy Immunol 28:430–437

  104. 104.

    Timm S, Frydenberg M, Janson C, Campbell B, Forsberg B, Gislason T, Holm M, Jogi R, Omenaas E, Sigsgaard T, Svanes C, Schlunssen V (2015) The Urban-Rural Gradient In Asthma: A Population-Based Study in Northern Europe Int J Environ Res Public Health:13

  105. 105.

    Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson WO, Braun-Fahrlander C, Heederik D, Piarroux R, von Mutius E (2011) Exposure to environmental microorganisms and childhood asthma. N Engl J Med 364:701–709

  106. 106.

    Timm S, Frydenberg M, Abramson MJ, Bertelsen RJ, Braback L, Benediktsdottir B, Gislason T, Holm M, Janson C, Jogi R, Johannessen A, Kim JL, Malinovschi A, Mishra G, Moratalla J, Sigsgaard T, Svanes C, Schlunssen V (2019) Asthma and selective migration from farming environments in a three-generation cohort study. Eur J Epidemiol

  107. 107.

    Li CX, Wheelock CE, Skold CM, Wheelock AM (2018) Integration of multi-omics datasets enables molecular classification of COPD. Eur Respir J 51

  108. 108.

    Huang S, Chaudhary K, Garmire LX (2017) More is better: recent progress in multi-omics data integration methods. Front Genet 8:84

  109. 109.

    Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, Haibe-Kains B, Goldenberg A (2014) Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 11:333–337

  110. 110.

    Mo Q, Wang S, Seshan VE, Olshen AB, Schultz N, Sander C, Powers RS, Ladanyi M, Shen R (2013) Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc Natl Acad Sci U S A 110:4245–4250

  111. 111.

    Nguyen H, Shrestha S, Draghici S, Nguyen T (2019) PINSPlus: a tool for tumor subtype discovery in integrated genomic data. Bioinformatics 35:2843–2846

  112. 112.

    John CR, Watson D, Barnes MR, Pitzalis C (2019) Lewis MJ. Fast density-aware spectral clustering for single and multi-omic data. Bioinformatics, Spectrum

  113. 113.

    Macaulay IC, Ponting CP, Voet T (2017) Single-cell multi-omics: multiple measurements from single cells. Trends Genet 33:155–168

  114. 114.

    Hu Y, An Q, Sheu K, Trejo B, Fan S, Guo Y (2018) Single cell multi-omics technology: methodology and application. Front Cell Dev Biol 6:28

  115. 115.

    Nawijn M, Carpaij O, Vieira Braga F, Berg M, Brouwer S, Kar G, Teichmann S, Van Den Berge M (2018) Novel cell types and altered cell states in asthma revealed by single-cell RNA sequencing of airway wall biopsies 52:OA505

  116. 116.

    Vieira Braga FA, Kar G, Berg M, Carpaij OA, Polanski K, Simon LM, Brouwer S, Gomes T, Hesse L, Jiang J, Fasouli ES, Efremova M, Vento-Tormo R, Affleck K, Palit S, Strzelecka P, Firth HV, Mahbubani KT, Cvejic A, Meyer KB, Saeb-Parsy K, Luinge M, Brandsma C-A, Timens W, Angelidis I, Strunz M, Koppelman GH, van Oosterhout AJ, Schiller HB, Theis FJ, van den Berge M, Nawijn MC, Teichmann SA (2019) A cellular census of healthy lung and asthmatic airway wall identifies novel cell states in health and disease:527408

  117. 117.

    Ivanova O, Richards LB, Vijverberg SJ, Neerincx AH, Sinha A, Sterk PJ, Maitland van der Zee AH. 2019. What did we learn from multiple omics studies in asthma? Allergy

  118. 118.

    Lee JE, Kim YY (2017) Impact of preanalytical variations in blood-derived bio specimens on omics studies: toward precision biobanking? Omics 21:499–508

  119. 119.

    The EU General Data Protection Regulation (GDPR)

  120. 120.

    BBMRI-ERIC Common Service ELSI. 2017. The EU general data protection regulation. Answers to Frequently Asked Questions (Version 2.0)

  121. 121.

    Wetterstrand K. 2019. DNA sequencing costs: data from the NHGRI genome sequencing program (GSP)

  122. 122.

    Mazein A, Knowles RG, Adcock I, Chung KF, Wheelock CE, Maitland-van der Zee AH, Sterk PJ, Auffray C (2018) AsthmaMap: an expert-driven computational representation of disease mechanisms. Clin Exp Allergy 48:916–918

  123. 123.

    van der Schee MP, Paff T, Brinkman P, van Aalderen WMC, Haarman EG, Sterk PJ (2015) Breathomics in lung disease. Chest 147:224–231

  124. 124.

    Wei CY, Lee MT, Chen YT (2012) Pharmacogenomics of adverse drug reactions: implementing personalized medicine. Hum Mol Genet 21:R58–R65

  125. 125.

    Arbitrio M, Di Martino MT, Scionti F, Agapito G, Guzzi PH, Cannataro M, Tassone P, Tagliaferri P (2016) DMET (drug metabolism enzymes and transporters): a pharmacogenomic platform for precision medicine. Oncotarget 7:54028–54050

  126. 126.

    Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs AD, Dilthey AT, Fiddes IT, Malla S, Marriott H, Nieto T, O'Grady J, Olsen HE, Pedersen BS, Rhie A, Richardson H, Quinlan AR, Snutch TP, Tee L, Paten B, Phillippy AM, Simpson JT, Loman NJ, Loose M (2018) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36:338–345

Download references

Author information

Correspondence to Anke H. Maitland-van der Zee.

Ethics declarations

Conflict of interest

AHM has been reimbursed for visiting the ATS by Chiesi, received a fee for participating in advisory boards for Boehringer Ingelheim and Astra Zeneca, and received an unrestricted research grant from GSK. ADK received grants/research support from several companies of Janssen, GSK, Nutricia Research, Friesland Campina, and NTRC.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue on Asthma: Novel developments from bench to bedside - Guest Editor: Bianca Schaub

Electronic supplementary material


(PDF 291 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdel-Aziz, M.I., Neerincx, A.H., Vijverberg, S.J. et al. Omics for the future in asthma. Semin Immunopathol (2020).

Download citation


  • Omics
  • Biomarkers
  • Precision medicine
  • Integration
  • Phenotypes
  • Challenges