A new therapeutic target: the CD69-Myl9 system in immune responses

  • Motoko Y. KimuraEmail author
  • Ryo Koyama-Nasu
  • Ryoji Yagi
  • Toshinori Nakayama


CD69 is an activation marker on leukocytes. Early studies showed that the CD69+ cells were detected in the lung of patients with asthmatic and eosinophilic pneumonia, suggesting that CD69 might play crucial roles in the pathogenesis of such inflammatory diseases, rather than simply being an activation marker. Intensive studies using mouse models have since clarified that CD69 is a functional molecule regulating the immune responses. We discovered that Myosin light chain 9, 12a, 12b (Myl9/12) are ligands for CD69 and that platelet-derived Myl9 forms a net-like structure (Myl9 nets) that is strongly detected inside blood vessels in inflamed lung. CD69-expressing activated T cells attached to the Myl9 nets can thereby migrate into the inflamed tissues through a system known as the CD69-Myl9 system. In this review, we summarize the discovery of the CD69-Myl9 system and discuss how this system is important in inflammatory immune responses. In addition, we discuss our recent finding that CD69 controls the exhaustion status of tumor-infiltrating T cells and that the blockade of the CD69 function enhances anti-tumor immunity. Finally, we discuss the possibility of CD69 as a new therapeutic target for patients with intractable inflammatory disorders and tumors


CD69 Myl9 Inflammation Allergy CD69–Myl9 system Anti-tumor immunity 



The authors acknowledge grants from the Ministry of Education, Culture, Sports, Science and Technology, Japan: Grants-in Aid for Scientific Research (S) #26221305, (C) 18K07257, (C) 18K07165 and 17K15715, Grants-in Aid for Scientific Research on Innovative Areas #17H05787, Grants-in Aid for Challenging Research (Exploratory) #18K19466 and Practical Research Project for Allergic Diseases and Immunology from Japan Agency for Medical Research and Development (AMED) [JP18ek0410030], Project for Cancer Research and Therapeutic Evolution (P-CREATE) (AMED) [JP18cm0106339], Advanced Research & Development Programs for Medical Innovation, (AMED-CREST) (AMED) [JP18gm1210003].

Compliance with ethical standards

Conflicts of interest

T. Nakayama has received research fund from Genefrontier (Chiba, Japan). M.Y. Kimura, R. Koyama-Nasu, and R. Yagi declare that they have no conflict of interest.


  1. 1.
    Ziegler SF, Ramsdell F, Hjerrild KA, Armitage RJ, Grabstein KH, Hennen KB, Farrah T, Fanslow WC, Shevach EM, Alderson MR (1993) Molecular characterization of the early activation antigen CD69: a type II membrane glycoprotein related to a family of natural killer cell activation antigens. Eur J Immunol 23:1643–1648CrossRefGoogle Scholar
  2. 2.
    Lopez-Cabrera M, Santis AG, Fernandez-Ruiz E, Blacher R, Esch F, Sanchez-Mateos P, Sanchez-Madrid F (1993) Molecular cloning, expression, and chromosomal localization of the human earliest lymphocyte activation antigen AIM/CD69, a new member of the C-type animal lectin superfamily of signal-transmitting receptors. J Exp Med 178:537–547CrossRefGoogle Scholar
  3. 3.
    Kimura MY, Hayashizaki K, Tokoyoda K, Takamura S, Motohashi S, Nakayama T (2017) Crucial role for CD69 in allergic inflammatory responses: CD69-Myl9 system in the pathogenesis of airway inflammation. Immunol Rev 278:87–100CrossRefGoogle Scholar
  4. 4.
    Llera AS, Viedma F, Sanchez-Madrid F, Tormo J (2001) Crystal structure of the C-type lectin-like domain from the human hematopoietic cell receptor CD69. J Biol Chem 276:7312–7319CrossRefGoogle Scholar
  5. 5.
    Lin CR, Wei TY, Tsai HY, Wu YT, Wu PY, Chen ST (2015) Glycosylation-dependent interaction between CD69 and S100A8/S100A9 complex is required for regulatory T-cell differentiation. FASEB J 29:5006–5017CrossRefGoogle Scholar
  6. 6.
    de la Fuente H, Cruz-Adalia A, Martinez Del Hoyo G, Cibrian-Vera D, Bonay P, Perez-Hernandez D, Vazquez J, Navarro P, Gutierrez-Gallego R, Ramirez-Huesca M, Martin P, Sanchez-Madrid F (2014) The leukocyte activation receptor CD69 controls T cell differentiation through its interaction with galectin-1. Mol Cell Biol 34:2479–2487CrossRefGoogle Scholar
  7. 7.
    Hayashizaki K, Kimura MY, Tokoyoda K, Hosokawa H, Shinoda K, Hirahara K, Ichikawa T, Onodera A, Hanazawa A, Iwamura C, Kakuta J, Muramoto K, Motohashi S, Tumes DJ, Iinuma T, Yamamoto H, Ikehara Y, Okamoto H, Nakayama T (2016) Myosin light chains 9 and 12 are functional ligands for CD69 that regulate airway inflammation. Sci Immunol 1:eaaf9154CrossRefGoogle Scholar
  8. 8.
    Mendez-Huergo SP, Blidner AG, Rabinovich GA (2017) Galectins: emerging regulatory checkpoints linking tumor immunity and angiogenesis. Curr Opin Immunol 45:8–15CrossRefGoogle Scholar
  9. 9.
    Stillman BN, Hsu DK, Pang M, Brewer CF, Johnson P, Liu FT, Baum LG (2006) Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol 176:778–789CrossRefGoogle Scholar
  10. 10.
    Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K, Hernandez SF, Bassil R, Croci DO, Cerliani JP, Delacour D, Wang Y, Elyaman W, Khoury SJ, Rabinovich GA (2012) Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 37:249–263CrossRefGoogle Scholar
  11. 11.
    Bonzi J, Bornet O, Betzi S, Kasper BT, Mahal LK, Mancini SJ, Schiff C, Sebban-Kreuzer C, Guerlesquin F, Elantak L (2015) Pre-B cell receptor binding to galectin-1 modifies galectin-1/carbohydrate affinity to modulate specific galectin-1/glycan lattice interactions. Nat Commun 6:6194CrossRefGoogle Scholar
  12. 12.
    Gebhardt C, Nemeth J, Angel P, Hess J (2006) S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 72:1622–1631CrossRefGoogle Scholar
  13. 13.
    Testi R, Pulcinelli F, Frati L, Gazzaniga PP, Santoni A (1990) CD69 is expressed on platelets and mediates platelet activation and aggregation. J Exp Med 172:701–707CrossRefGoogle Scholar
  14. 14.
    Testi R, D’Ambrosio D, De Maria R, Santoni A (1994) The CD69 receptor: a multipurpose cell-surface trigger for hematopoietic cells. Immunol Today 15:479–483CrossRefGoogle Scholar
  15. 15.
    Gonzalez-Amaro R, Cortes JR, Sanchez-Madrid F, Martin P (2013) Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med 19:625–632CrossRefGoogle Scholar
  16. 16.
    Martin P, Gomez M, Lamana A, Cruz-Adalia A, Ramirez-Huesca M, Ursa MA, Yanez-Mo M, Sanchez-Madrid F (2010) CD69 association with Jak3/Stat5 proteins regulates Th17 cell differentiation. Mol Cell Biol 30:4877–4889CrossRefGoogle Scholar
  17. 17.
    Cyster JG, Schwab SR (2012) Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 30:69–94CrossRefGoogle Scholar
  18. 18.
    Bankovich AJ, Shiow LR, Cyster JG (2010) CD69 suppresses sphingosine 1-phosophate receptor-1 (S1P1) function through interaction with membrane helix 4. J Biol Chem 285:22328–22337CrossRefGoogle Scholar
  19. 19.
    Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407CrossRefGoogle Scholar
  20. 20.
    Shiow LR, Rosen DB, Brdickova N, Xu Y, An J, Lanier LL, Cyster JG, Matloubian M (2006) CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440:540–544CrossRefGoogle Scholar
  21. 21.
    Feng C, Woodside KJ, Vance BA, El-Khoury D, Canelles M, Lee J, Gress R, Fowlkes BJ, Shores EW, Love PE (2002) A potential role for CD69 in thymocyte emigration. Int Immunol 14:535–544CrossRefGoogle Scholar
  22. 22.
    Nakayama T, Kasprowicz DJ, Yamashita M, Schubert LA, Gillard G, Kimura M, Didierlaurent A, Koseki H, Ziegler SF (2002) The generation of mature, single-positive thymocytes in vivo is dysregulated by CD69 blockade or overexpression. J Immunol 168:87–94CrossRefGoogle Scholar
  23. 23.
    Zachariah MA, Cyster JG (2010) Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science 328:1129–1135CrossRefGoogle Scholar
  24. 24.
    Murata K, Inami M, Hasegawa A, Kubo S, Kimura M, Yamashita M, Hosokawa H, Nagao T, Suzuki K, Hashimoto K, Shinkai H, Koseki H, Taniguchi M, Ziegler SF, Nakayama T (2003) CD69-null mice protected from arthritis induced with anti-type II collagen antibodies. Int Immunol 15:987–992CrossRefGoogle Scholar
  25. 25.
    Lauzurica P, Sancho D, Torres M, Albella B, Marazuela M, Merino T, Bueren JA, Martinez AC, Sanchez-Madrid F (2000) Phenotypic and functional characteristics of hematopoietic cell lineages in CD69-deficient mice. Blood 95:2312–2320Google Scholar
  26. 26.
    Kimura MY, Igi A, Hayashizaki K, Mita Y, Shinzawa M, Kadakia T, Endo Y, Ogawa S, Yagi R, Motohashi S, Singer A, Nakayama T (2018) CD69 prevents PLZF(hi) innate precursors from prematurely exiting the thymus and aborting NKT2 cell differentiation. Nat Commun 9:3749CrossRefGoogle Scholar
  27. 27.
    Hall JG, Morris B (1965) The immediate effect of antigens on the cell output of a lymph node. Br J Exp Pathol 46:450–454Google Scholar
  28. 28.
    Grigorova IL, Panteleev M, Cyster JG (2010) Lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure. Proc Natl Acad Sci U S A 107:20447–20452CrossRefGoogle Scholar
  29. 29.
    Schenkel JM, Masopust D (2014) Tissue-resident memory T cells. Immunity 41:886–897CrossRefGoogle Scholar
  30. 30.
    Miki-Hosokawa T, Hasegawa A, Iwamura C, Shinoda K, Tofukuji S, Watanabe Y, Hosokawa H, Motohashi S, Hashimoto K, Shirai M, Yamashita M, Nakayama T (2009) CD69 controls the pathogenesis of allergic airway inflammation. J Immunol 183:8203–8215CrossRefGoogle Scholar
  31. 31.
    Wang HY, Dai Y, Wang JL, Yang XY, Jiang XG (2015) Anti-CD69 monoclonal antibody treatment inhibits airway inflammation in a mouse model of asthma. J Zhejiang Univ Sci B 16:622–631CrossRefGoogle Scholar
  32. 32.
    Tsuyusaki J, Kuroda F, Kasuya Y, Ishizaki S, Yamauchi K, Sugimoto H, Kono T, Iwamura C, Nakayama T, Tatsumi K (2011) Cigarette smoke-induced pulmonary inflammation is attenuated in CD69-deficient mice. J Recept Signal Transduct Res 31:434–439CrossRefGoogle Scholar
  33. 33.
    Yamauchi K, Kasuya Y, Kuroda F, Tanaka K, Tsuyusaki J, Ishizaki S, Matsunaga H, Iwamura C, Nakayama T, Tatsumi K (2011) Attenuation of lung inflammation and fibrosis in CD69-deficient mice after intratracheal bleomycin. Respir Res 12:131CrossRefGoogle Scholar
  34. 34.
    Hasegawa A, Iwamura C, Kitajima M, Hashimoto K, Otsuyama K, Ogino H, Nakayama T, Shirai M (2013) Crucial role for CD69 in the pathogenesis of dextran sulphate sodium-induced colitis. PLoS One 8:e65494CrossRefGoogle Scholar
  35. 35.
    Radulovic K, Manta C, Rossini V, Holzmann K, Kestler HA, Wegenka UM, Nakayama T, Niess JH (2012) CD69 regulates type I IFN-induced tolerogenic signals to mucosal CD4 T cells that attenuate their colitogenic potential. J Immunol 188:2001–2013CrossRefGoogle Scholar
  36. 36.
    Radulovic K, Rossini V, Manta C, Holzmann K, Kestler HA, Niess JH (2013) The early activation marker CD69 regulates the expression of chemokines and CD4 T cell accumulation in intestine. PLoS One 8:e65413CrossRefGoogle Scholar
  37. 37.
    Cortes JR, Sanchez-Diaz R, Bovolenta ER, Barreiro O, Lasarte S, Matesanz-Marin A, Toribio ML, Sanchez-Madrid F, Martin P (2014) Maintenance of immune tolerance by Foxp3+ regulatory T cells requires CD69 expression. J Autoimmun 55:51–62CrossRefGoogle Scholar
  38. 38.
    Shinoda K, Tokoyoda K, Hanazawa A, Hayashizaki K, Zehentmeier S, Hosokawa H, Iwamura C, Koseki H, Tumes DJ, Radbruch A, Nakayama T (2012) Type II membrane protein CD69 regulates the formation of resting T-helper memory. Proc Natl Acad Sci U S A 109:7409–7414CrossRefGoogle Scholar
  39. 39.
    Nakayama T, Yoshikawa M, Asaka D, Okushi T, Matsuwaki Y, Otori N, Hama T, Moriyama H (2011) Mucosal eosinophilia and recurrence of nasal polyps—new classification of chronic rhinosinusitis. Rhinology 49:392–396Google Scholar
  40. 40.
    Shinoda K, Hirahara K, Iinuma T, Ichikawa T, Suzuki AS, Sugaya K, Tumes DJ, Yamamoto H, Hara T, Tani-Ichi S, Ikuta K, Okamoto Y, Nakayama T (2016) Thy1+IL-7+ lymphatic endothelial cells in iBALT provide a survival niche for memory T-helper cells in allergic airway inflammation. Proc Natl Acad Sci U S A 113:E2842–E2851CrossRefGoogle Scholar
  41. 41.
    Garcia BA, Smalley DM, Cho H, Shabanowitz J, Ley K, Hunt DF (2005) The platelet microparticle proteome. J Proteome Res 4:1516–1521CrossRefGoogle Scholar
  42. 42.
    Gilles L, Bluteau D, Boukour S, Chang Y, Zhang Y, Robert T, Dessen P, Debili N, Bernard OA, Vainchenker W, Raslova H (2009) MAL/SRF complex is involved in platelet formation and megakaryocyte migration by regulating MYL9 (MLC2) and MMP9. Blood 114:4221–4232CrossRefGoogle Scholar
  43. 43.
    Seri M, Cusano R, Gangarossa S, Caridi G, Bordo D, Lo Nigro C, Ghiggeri GM, Ravazzolo R, Savino M, Del Vecchio M, d’Apolito M, Iolascon A, Zelante LL, Savoia A, Balduini CL, Noris P, Magrini U, Belletti S, Heath KE, Babcock M, Glucksman MJ, Aliprandis E, Bizzaro N, Desnick RJ, Martignetti JA (2000) Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Heggllin/Fechtner Syndrome Consortium. Nat Genet 26:103–105CrossRefGoogle Scholar
  44. 44.
    Lopez-Cabrera M, Munoz E, Blazquez MV, Ursa MA, Santis AG, Sanchez-Madrid F (1995) Transcriptional regulation of the gene encoding the human C-type lectin leukocyte receptor AIM/CD69 and functional characterization of its tumor necrosis factor-alpha-responsive elements. J Biol Chem 270:21545–21551CrossRefGoogle Scholar
  45. 45.
    Kohlmeier JE, Miller SC, Woodland DL (2007) Cutting edge: antigen is not required for the activation and maintenance of virus-specific memory CD8+ T cells in the lung airways. J Immunol 178:4721–4725CrossRefGoogle Scholar
  46. 46.
    Ledgerwood LG, Lal G, Zhang N, Garin A, Esses SJ, Ginhoux F, Merad M, Peche H, Lira SA, Ding Y, Yang Y, He X, Schuchman EH, Allende ML, Ochando JC, Bromberg JS (2008) The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nat Immunol 9:42–53CrossRefGoogle Scholar
  47. 47.
    Takamura S, Roberts AD, Jelley-Gibbs DM, Wittmer ST, Kohlmeier JE, Woodland DL (2010) The route of priming influences the ability of respiratory virus-specific memory CD8+ T cells to be activated by residual antigen. J Exp Med 207:1153–1160CrossRefGoogle Scholar
  48. 48.
    Casey KA, Fraser KA, Schenkel JM, Moran A, Abt MC, Beura LK, Lucas PJ, Artis D, Wherry EJ, Hogquist K, Vezys V, Masopust D (2012) Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J Immunol 188:4866–4875CrossRefGoogle Scholar
  49. 49.
    Skon CN, Lee JY, Anderson KG, Masopust D, Hogquist KA, Jameson SC (2013) Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat Immunol 14:1285–1293CrossRefGoogle Scholar
  50. 50.
    Esplugues E, Sancho D, Vega-Ramos J, Martinez C, Syrbe U, Hamann A, Engel P, Sanchez-Madrid F, Lauzurica P (2003) Enhanced antitumor immunity in mice deficient in CD69. J Exp Med 197:1093–1106CrossRefGoogle Scholar
  51. 51.
    Esplugues E, Vega-Ramos J, Cartoixa D, Vazquez BN, Salaet I, Engel P, Lauzurica P (2005) Induction of tumor NK-cell immunity by anti-CD69 antibody therapy. Blood 105:4399–4406CrossRefGoogle Scholar
  52. 52.
    Wei SM, Pan HL, Wang L, Yin GL, Zhong K, Zhou Y, Yang SJ, Xin ZL (2017) Combination therapy with dendritic cell-based vaccine and anti-CD69 antibody enhances antitumor efficacy in renal cell carcinoma-bearing mice. Turk J Med Sci 47:658–667CrossRefGoogle Scholar
  53. 53.
    Mita Y, Kimura MY, Hayashizaki K, Koyama-Nasu R, Ito T, Motohashi S, Okamoto Y, Nakayama T (2018) Crucial role of CD69 in anti-tumor immunity through regulating the exhaustion of tumor-infiltrating T cells. Int Immunol 30:559–567CrossRefGoogle Scholar
  54. 54.
    Budhu S, Schaer DA, Li Y, Toledo-Crow R, Panageas K, Yang X, Zhong H, Houghton AN, Silverstein SC, Merghoub T, Wolchok JD (2017) Blockade of surface-bound TGF-beta on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment. Sci Signal 10:eaak9702CrossRefGoogle Scholar
  55. 55.
    Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita JL, Cubas R, Jhunjhunwala S, Banchereau R, Yang Y, Guan Y, Chalouni C, Ziai J, Senbabaoglu Y, Santoro S, Sheinson D, Hung J, Giltnane JM, Pierce AA, Mesh K, Lianoglou S, Riegler J, Carano RAD, Eriksson P, Hoglund M, Somarriba L, Halligan DL, van der Heijden MS, Loriot Y, Rosenberg JE, Fong L, Mellman I, Chen DS, Green M, Derleth C, Fine GD, Hegde PS, Bourgon R, Powles T (2018) TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554:544–548CrossRefGoogle Scholar
  56. 56.
    Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, Sevillano M, Ibiza S, Canellas A, Hernando-Momblona X, Byrom D, Matarin JA, Calon A, Rivas EI, Nebreda AR, Riera A, Attolini CS, Batlle E (2018) TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554:538–543CrossRefGoogle Scholar
  57. 57.
    Yang ZZ, Grote DM, Xiu B, Ziesmer SC, Price-Troska TL, Hodge LS, Yates DM, Novak AJ, Ansell SM (2014) TGF-beta upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin’s lymphoma. Leukemia 28:1872–1884CrossRefGoogle Scholar
  58. 58.
    Webb JR, Milne K, Watson P, Deleeuw RJ, Nelson BH (2014) Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin Cancer Res 20:434–444CrossRefGoogle Scholar
  59. 59.
    Djenidi F, Adam J, Goubar A, Durgeau A, Meurice G, de Montpreville V, Validire P, Besse B, Mami-Chouaib F (2015) CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J Immunol 194:3475–3486CrossRefGoogle Scholar
  60. 60.
    Wang B, Wu S, Zeng H, Liu Z, Dong W, He W, Chen X, Dong X, Zheng L, Lin T, Huang J (2015) CD103+ tumor infiltrating lymphocytes predict a favorable prognosis in urothelial cell carcinoma of the bladder. J Urol 194:556–562CrossRefGoogle Scholar
  61. 61.
    Ganesan AP, Clarke J, Wood O, Garrido-Martin EM, Chee SJ, Mellows T, Samaniego-Castruita D, Singh D, Seumois G, Alzetani A, Woo E, Friedmann PS, King EV, Thomas GJ, Sanchez-Elsner T, Vijayanand P, Ottensmeier CH (2017) Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat Immunol 18:940–950CrossRefGoogle Scholar
  62. 62.
    Koh J, Kim S, Kim MY, Go H, Jeon YK, Chung DH (2017) Prognostic implications of intratumoral CD103+ tumor-infiltrating lymphocytes in pulmonary squamous cell carcinoma. Oncotarget 8:13762–13769Google Scholar
  63. 63.
    Edwards J, Wilmott JS, Madore J, Gide TN, Quek C, Tasker A, Ferguson A, Chen J, Hewavisenti R, Hersey P, Gebhardt T, Weninger W, Britton WJ, Saw RPM, Thompson JF, Menzies AM, Long GV, Scolyer RA, Palendira U (2018) CD103(+) tumor-resident CD8(+) T cells are associated with improved survival in immunotherapy-naive melanoma patients and expand significantly during anti-PD-1 treatment. Clin Cancer Res 24:3036–3045CrossRefGoogle Scholar
  64. 64.
    Duhen T, Duhen R, Montler R, Moses J, Moudgil T, de Miranda NF, Goodall CP, Blair TC, Fox BA, McDermott JE, Chang SC, Grunkemeier G, Leidner R, Bell RB, Weinberg AD (2018) Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat Commun 9:2724CrossRefGoogle Scholar
  65. 65.
    Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KWW, Yeong JPS, Nahar R, Zhang T, Kared H, Duan K, Ang N, Poidinger M, Lee YY, Larbi A, Khng AJ, Tan E, Fu C, Mathew R, Teo M, Lim WT, Toh CK, Ong BH, Koh T, Hillmer AM, Takano A, Lim TKH, Tan EH, Zhai W, Tan DSW, Tan IB, Newell EW (2018) Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557:575–579CrossRefGoogle Scholar
  66. 66.
    Park SL, Buzzai A, Rautela J, Hor JL, Hochheiser K, Effern M, McBain N, Wagner T, Edwards J, McConville R, Wilmott JS, Scolyer RA, Tuting T, Palendria U, Gyorki D, Mueller SN, Huntington ND, Bedoui S, Holzel M, Mackay LK, Waithman J, Gebhardt T (2019) Tissue-resident memory CD8(+) T cells promote melanoma-immune equilibrium in skin. Nature 565:366–371CrossRefGoogle Scholar
  67. 67.
    Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Immunology, Graduate School of MedicineChiba UniversityChibaJapan

Personalised recommendations