Advertisement

Seminars in Immunopathology

, Volume 41, Issue 3, pp 315–326 | Cite as

Regulation of T cell differentiation and function by epigenetic modification enzymes

  • Huicheng Liu
  • Pingfei Li
  • Zhengping Wei
  • Cai Zhang
  • Minghui Xia
  • Qiuyang Du
  • Yufei Chen
  • Na Liu
  • Huabin Li
  • Xiang-Ping YangEmail author
Review

Abstract

Peripheral naive CD4+ and CD8+ cells are developed in the thymus and proliferate and differentiate into various specialized T cell subsets upon activation by peptide-major histocompatibility complexes in periphery to execute different functions during immune responses. Cytokines, transcription factors, and a large number of intracellular molecules have been shown to affect T cell development, activation, and function. In addition, epigenetic modifications, such as histone modification and DNA methylation, regulate T cell biology. The epigenetic modifications are regulated by a range of DNA methyltransferases, DNA demethylation enzymes, and histone modification enzymes. Dysregulations of epigenetic modifications are closely associated with autoimmune diseases and tumorigenesis. Here, we review the current literature about the functions of DNA and histone modification enzymes in T cell development, activation, differentiation, and function.

Keywords

T cell Epigenetic regulation DNA methylation 5mC demethylation Histone modification enzymes 

Notes

Acknowledgments

The authors apologize to colleagues for works that were uncited due to space constrains. This work was supported by grants from the National Scientific Foundation of China to X.P.Y (81671539, 31470851, and 31870892) and to H.B.L (81725004).

Compliance with ethical standards

Competing interests

The authors declare no competing financial or non-financial interests.

References

  1. 1.
    Veiga-Fernandes H, Walter U, Bourgeois C, McLean A, Rocha B (2000) Response of naive and memory CD8(+) T cells to antigen stimulation in vivo. Nat Immunol 1(1):47–53Google Scholar
  2. 2.
    Nakayamada S, Takahashi H, Kanno Y, O'Shea JJ (2012) Helper T cell diversity and plasticity. Curr Opin Immunol 24(3):297–302Google Scholar
  3. 3.
    Zhu JF, Paul WE (2010) Heterogeneity and plasticity of T helper cells. Cell Res 20(1):4–12Google Scholar
  4. 4.
    Doherty PC, Topham DJ, Tripp RA (1996) Establishment and persistence of virus-specific CD4+ and CD8+ T cell memory. Immunol Rev 150:23–44Google Scholar
  5. 5.
    Agnello D, Lankford CSR, Bream J et al (2003) Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J Clin Immunol 23(3):147–161Google Scholar
  6. 6.
    Kanno Y, Vahedi G, Hirahara K, Singleton K, O'Shea JJ (2012) Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu Rev Immunol 30:707–731Google Scholar
  7. 7.
    Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597–610Google Scholar
  8. 8.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705Google Scholar
  9. 9.
    Marmorstein R, Trievel RC (2009) Histone modifying enzymes: structures, mechanisms, and specificities. Biochim Biophys Acta 1789(1):58–68Google Scholar
  10. 10.
    Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318Google Scholar
  11. 11.
    Pekowska A, Benoukraf T, Zacarias-Cabeza J, Belhocine M, Koch F, Holota H, Imbert J, Andrau JC, Ferrier P, Spicuglia S (2011) H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J 30(20):4198–4210Google Scholar
  12. 12.
    Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigó R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489(7414):101–108Google Scholar
  13. 13.
    Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257Google Scholar
  14. 14.
    Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9(16):2395–2402Google Scholar
  15. 15.
    Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, Pérez-Melgosa M, Sweetser MT, Schlissel MS, Nguyen S, Cherry SR, Tsai JH, Tucker SM, Weaver WM, Kelso A, Jaenisch R, Wilson CB (2001) A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15(5):763–774Google Scholar
  16. 16.
    Lee DU, Agarwal S, Rao A (2002) Th2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity 16(5):649–660Google Scholar
  17. 17.
    Wang LQ, Liu YJ, Beier UH et al (2013) Foxp3+ T-regulatory cells require DNA methyltransferase 1 expression to prevent development of lethal autoimmunity. Blood 121(18):3631–3639Google Scholar
  18. 18.
    Pham D, Yu Q, Walline CC, Muthukrishnan R, Blum JS, Kaplan MH (2013) Opposing roles of STAT4 and Dnmt3a in Th1 gene regulation. J Immunol 191(2):902–911Google Scholar
  19. 19.
    Yu Q, Zhou BH, Zhang YL et al (2012) DNA methyltransferase 3a limits the expression of interleukin-13 in T helper 2 cells and allergic airway inflammation. Proc Natl Acad Sci U S A 109(2):541–546Google Scholar
  20. 20.
    Ladle BH, Li KP, Phillips MJ, Pucsek AB, Haile A, Powell JD, Jaffee EM, Hildeman DA, Gamper CJ (2016) De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A 113(38):10631–10636Google Scholar
  21. 21.
    Youngblood B, Hale JS, Kissick HT, Ahn E, Xu X, Wieland A, Araki K, West EE, Ghoneim HE, Fan Y, Dogra P, Davis CW, Konieczny BT, Antia R, Cheng X, Ahmed R (2017) Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552(7685):404–409Google Scholar
  22. 22.
    Wu XJ, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18(9):517–534Google Scholar
  23. 23.
    Ooi SKT, O'Donnell AH, Bestor TH (2009) Mammalian cytosine methylation at a glance. J Cell Sci 122(16):2787–2791Google Scholar
  24. 24.
    Tsagaratou A, Aijo T, Lio CWJ, Yue X, Huang Y, Jacobsen SE, Lahdesmaki H, Rao A (2014) Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation. Proc Natl Acad Sci U S A 111(32):E3306–E3315Google Scholar
  25. 25.
    Iyer LM, Tahiliani M, Rao A, Aravind L (2009) Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8(11):1698–1710Google Scholar
  26. 26.
    Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer CA, Mostoslavsky G, Lahesmaa R, Orkin SH, Rodig SJ, Daley GQ, Rao A (2011) Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8(2):200–213Google Scholar
  27. 27.
    Pastor WA, Aravind L, Rao A (2013) TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14(6):341–356Google Scholar
  28. 28.
    Yue XJ, Trifari S, Aijo T et al (2016) Control of Foxp3 stability through modulation of TET activity. J Exp Med 213(3):377–397Google Scholar
  29. 29.
    Nair VS, Oh KI (2014) Down-regulation of Tet2 prevents TSDR demethylation in IL2 deficient regulatory T cells. Biochem Biophys Res Commun 450(1):918–924Google Scholar
  30. 30.
    Yang RL, Qu CY, Zhou Y et al (2015) Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity 43(2):251–263Google Scholar
  31. 31.
    Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463(7282):808–U120Google Scholar
  32. 32.
    Floess S, Freyer J, Siewert C et al (2007) Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 5(2):169–178Google Scholar
  33. 33.
    Tsagaratou A, Gonzalez-Avalos E, Rautio S et al (2017) TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells. Nat Immunol 18(1):45–53Google Scholar
  34. 34.
    Ko M, Bandukwala HS, An J, Lamperti ED, Thompson EC, Hastie R, Tsangaratou A, Rajewsky K, Koralov SB, Rao A (2011) Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci U S A 108(35):14566–14571Google Scholar
  35. 35.
    Nair VS, Song MH, Oh KI (2016) Vitamin C facilitates demethylation of the Foxp3 enhancer in a Tet-dependent manner. J Immunol 196(5):2119–2131Google Scholar
  36. 36.
    Marmorstein R, Zhou MM (2014) Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 6(7)Google Scholar
  37. 37.
    Ellmeier W, Seiser C (2018) Histone deacetylase function in CD4(+) T cells. Nat Rev Immunol 18:617–634Google Scholar
  38. 38.
    Harlow E, Whyte P, Franza BR Jr, Schley C (1986) Association of adenovirus early-region 1A proteins with cellular polypeptides. Mol Cell Biol 6(5):1579–1589Google Scholar
  39. 39.
    Kasper LH, Fukuyama T, Biesen MA, Boussouar F, Tong C, de Pauw A, Murray PJ, van Deursen JMA, Brindle PK (2006) Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development. Mol Cell Biol 26(3):789–809Google Scholar
  40. 40.
    Avots A, Buttmann M, Chuvpilo S, Escher C, Smola U, Bannister AJ, Rapp UR, Kouzarides T, Serfling E (1999) CBP/p300 integrates Raf/Rac-signaling pathways in the transcriptional induction of NF-ATc during T cell activation. Immunity 10(5):515–524Google Scholar
  41. 41.
    Hosokawa H, Tanaka T, Suzuki Y, Iwamura C, Ohkubo S, Endoh K, Kato M, Endo Y, Onodera A, Tumes DJ, Kanai A, Sugano S, Nakayama T (2013) Functionally distinct Gata3/Chd4 complexes coordinately establish T helper 2 (Th2) cell identity. Proc Natl Acad Sci U S A 110(12):4691–4696Google Scholar
  42. 42.
    Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen HR, Luo W, Zeller K, Shimoda L, Topalian SL, Semenza GL, Dang CV, Pardoll DM, Pan F (2011) Control of T(H)17/T-reg balance by hypoxia-inducible factor 1. Cell 146(5):772–784Google Scholar
  43. 43.
    Hammitzsch A, Tallant C, Fedorov O, O’Mahony A, Brennan PE, Hay DA, Martinez FO, al-Mossawi MH, de Wit J, Vecellio M, Wells C, Wordsworth P, Müller S, Knapp S, Bowness P (2015) CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc Natl Acad Sci U S A 112(34):10768–10773Google Scholar
  44. 44.
    Maekawa Y, Minato Y, Ishifune C, Kurihara T, Kitamura A, Kojima H, Yagita H, Sakata-Yanagimoto M, Saito T, Taniuchi I, Chiba S, Sone S, Yasutomo K (2008) Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity. Nat Immunol 9(10):1140–1147Google Scholar
  45. 45.
    van Loosdregt J, Vercoulen Y, Guichelaar T, Gent YYJ, Beekman JM, van Beekum O, Brenkman AB, Hijnen DJ, Mutis T, Kalkhoven E, Prakken BJ, Coffer PJ (2010) Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115(5):965–974Google Scholar
  46. 46.
    Liu YJ, Wang LQ, Predina J et al (2013) Inhibition of p300 impairs Foxp3(+) T regulatory cell function and promotes antitumor immunity. Nat Med 19(9):1173–1177Google Scholar
  47. 47.
    Vahedi G, Kanno Y, Furumoto Y, Jiang K, Parker SCJ, Erdos MR, Davis SR, Roychoudhuri R, Restifo NP, Gadina M, Tang Z, Ruan Y, Collins FS, Sartorelli V, O’Shea JJ (2015) Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520(7548):558–562Google Scholar
  48. 48.
    Javaid N, Choi S (2017) Acetylation- and methylation-related epigenetic proteins in the context of their targets. Genes-Basel 8(8)Google Scholar
  49. 49.
    Gao BX, Kong QF, Zhang YN et al (2017) The histone acetyltransferase Gcn5 positively regulates T cell activation. J Immunol 198(10):3927–3938Google Scholar
  50. 50.
    Goswami R, Kaplan MH (2012) Gcn5 is required for PU.1-dependent IL-9 induction in Th9 cells. J Immunol 189(6):3026–3033Google Scholar
  51. 51.
    Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn't fit all. Nat Rev Mol Cell Biol 8(4):284–295Google Scholar
  52. 52.
    Millard CJ, Watson PJ, Fairall L, Schwabe JWR (2017) Targeting class I histone deacetylases in a “complex” environment. Trends Pharmacol Sci 38(4):363–377Google Scholar
  53. 53.
    Dovey OM, Foster CT, Conte N, Edwards SA, Edwards JM, Singh R, Vassiliou G, Bradley A, Cowley SM (2013) Histone deacetylase 1 and 2 are essential for normal T-cell development and genomic stability in mice. Blood 121(8):1335–1344Google Scholar
  54. 54.
    Boucheron N, Tschismarov R, Goeschl L et al (2014) CD4(+) T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2. Nat Immunol 15(5):439–43+Google Scholar
  55. 55.
    Goschl L, Preglej T, Hamminger P et al (2018) A T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis. J Autoimmun 86:51–61Google Scholar
  56. 56.
    Grausenburger R, Bilic I, Boucheron N, Zupkovitz G, el-Housseiny L, Tschismarov R, Zhang Y, Rembold M, Gaisberger M, Hartl A, Epstein MM, Matthias P, Seiser C, Ellmeier W (2010) Conditional deletion of histone deacetylase 1 in T cells leads to enhanced airway inflammation and increased Th2 cytokine production. J Immunol 185(6):3489–3497Google Scholar
  57. 57.
    Woods DM, Woan KV, Cheng FD et al (2017) T cells lacking HDAC11 have increased effector functions and mediate enhanced alloreactivity in a murine model. Blood 130(2):146–155Google Scholar
  58. 58.
    Yan KL, Cao Q, Reilly CM et al (2011) Histone deacetylase 9 deficiency protects against effector T cell-mediated systemic autoimmunity. J Biol Chem 286(33):28833–28843Google Scholar
  59. 59.
    Lim HW, Kang SG, Ryu JK, Schilling B, Fei M, Lee IS, Kehasse A, Shirakawa K, Yokoyama M, Schnölzer M, Kasler HG, Kwon HS, Gibson BW, Sato H, Akassoglou K, Xiao C, Littman DR, Ott M, Verdin E (2015) SIRT1 deacetylates ROR gamma t and enhances Th17 cell generation. J Exp Med 212(5):607–617Google Scholar
  60. 60.
    Zhang JN, Lee SM, Shannon S et al (2009) The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J Clin Invest 119(10):3048–3058Google Scholar
  61. 61.
    Lu L, Barbi J, Pan F (2017) The regulation of immune tolerance by FOXP3. Nat Rev Immunol 17(11):703–717Google Scholar
  62. 62.
    Li B, Greene MI (2007) FOXP3 actively represses transcription by recruiting the HAT/HDAC complex. Cell Cycle 6(12):1432–1436Google Scholar
  63. 63.
    Tao R, de Zoeten EF, Ozkaynak E et al (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13(11):1299–1307Google Scholar
  64. 64.
    Wang LQ, Liu YJ, Han RX et al (2015) FOXP3(+) regulatory T cell development and function require histone/protein deacetylase 3. J Clin Invest 125(3):1111–1123Google Scholar
  65. 65.
    Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269Google Scholar
  66. 66.
    Morera L, Lubbert M, Jung M (2016) Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics 8:57Google Scholar
  67. 67.
    Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H, Shinkai Y (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16(14):1779–1791Google Scholar
  68. 68.
    Verbaro DJ, Sakurai N, Kim B, Shinkai Y, Egawa T (2018) Cutting edge: the histone methyltransferase G9a is required for silencing of helper T lineage-associated genes in proliferating CD8 T cells. J Immunol 200(12):3891–3896Google Scholar
  69. 69.
    Shin HM, Kapoor V, Guan T et al (2013) Epigenetic modifications induced by Blimp-1 regulate CD8(+) T cell memory progression during acute virus infection. Immunity 39(4):661–675Google Scholar
  70. 70.
    Hedrich CM, Crispin JC, Rauen T et al (2014) cAMP responsive element modulator (CREM) alpha mediates chromatin remodeling of CD8 during the generation of CD3(+)CD4(−)CD8(−) T cells. J Biol Chem 289(4):2361–2370Google Scholar
  71. 71.
    Antignano F, Burrows K, Hughes MR, Han JM, Kron KJ, Penrod NM, Oudhoff MJ, Wang SKH, Min PH, Gold MJ, Chenery AL, Braam MJS, Fung TC, Rossi FMV, McNagny KM, Arrowsmith CH, Lupien M, Levings MK, Zaph C (2014) Methyltransferase G9A regulates T cell differentiation during murine intestinal inflammation. J Clin Invest 124(5):1945–1955Google Scholar
  72. 72.
    Lehnertz B, Northrop JP, Antignano F, Burrows K, Hadidi S, Mullaly SC, Rossi FMV, Zaph C (2010) Activating and inhibitory functions for the histone lysine methyltransferase G9a in T helper cell differentiation and function. J Exp Med 207(5):915–922Google Scholar
  73. 73.
    Zhang XH, Cook PC, Zindy E et al (2016) Integrin alpha 4 beta 1 controls G9a activity that regulates epigenetic changes and nuclear properties required for lymphocyte migration. Nucleic Acids Res 44(7):3031–3044Google Scholar
  74. 74.
    Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410(6824):120–124Google Scholar
  75. 75.
    Wakabayashi Y, Tamiya T, Takada I, Fukaya T, Sugiyama Y, Inoue N, Kimura A, Morita R, Kashiwagi I, Takimoto T, Nomura M, Yoshimura A (2011) Histone 3 lysine 9 (H3K9) methyltransferase recruitment to the interleukin-2 (IL-2) promoter is a mechanism of suppression of IL-2 transcription by the transforming growth factor-beta-Smad pathway. J Biol Chem 286(41):35456–35465Google Scholar
  76. 76.
    Allan RS, Zueva E, Cammas F, Schreiber HA, Masson V, Belz GT, Roche D, Maison C, Quivy JP, Almouzni G, Amigorena S (2012) An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature 487(7406):249–U137Google Scholar
  77. 77.
    Pace L, Goudot C, Zueva E, Gueguen P, Burgdorf N, Waterfall JJ, Quivy JP, Almouzni G, Amigorena S (2018) The epigenetic control of stemness in CD8(+) T cell fate commitment. Science 359(6372):177–17+Google Scholar
  78. 78.
    Morey L, Helin K (2010) Polycomb group protein-mediated repression of transcription. Trends Biochem Sci 35(6):323–332Google Scholar
  79. 79.
    Yang XP, Jiang K, Hirahara K et al (2015) EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Sci Rep-Uk 5Google Scholar
  80. 80.
    Tumes DJ, Onodera A, Suzuki A, Shinoda K, Endo Y, Iwamura C, Hosokawa H, Koseki H, Tokoyoda K, Suzuki Y, Motohashi S, Nakayama T (2013) The polycomb protein Ezh2 regulates differentiation and plasticity of CD4(+) T helper type 1 and type 2 cells. Immunity 39(5):819–832Google Scholar
  81. 81.
    DuPage M, Chopra G, Quiros J, Rosenthal WL, Morar MM, Holohan D, Zhang R, Turka L, Marson A, Bluestone JA (2015) The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity 42(2):227–238Google Scholar
  82. 82.
    Zhang YX, Kinkel S, Maksimovic J et al (2014) The polycomb repressive complex 2 governs life and death of peripheral T cells. Blood 124(5):737–749Google Scholar
  83. 83.
    Su I, Dobenecker MW, Dickinson E, Oser M, Basavaraj A, Marqueron R, Viale A, Reinberg D, Wülfing C, Tarakhovsky A (2005) Polycomb group protein Ezh2 controls actin polymerization and cell signaling. Cell 121(3):425–436Google Scholar
  84. 84.
    Gray SM, Amezquita RA, Guan TX et al (2017) Polycomb repressive complex 2-mediated chromatin repression guides effector CD8(+) T cell terminal differentiation and loss of multipotency. Immunity 46(4):596–608Google Scholar
  85. 85.
    He S, Liu YN, Meng LJ et al (2017) Ezh2 phosphorylation state determines its capacity to maintain CD8(+) T memory precursors for antitumor immunity. Nat Commun 8:2125Google Scholar
  86. 86.
    Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, Sun Y, Zhao E, Vatan L, Szeliga W, Kotarski J, Tarkowski R, Dou Y, Cho K, Hensley-Alford S, Munkarah A, Liu R, Zou W (2015) Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527(7577):249–253Google Scholar
  87. 87.
    Goswami S, Apostolou I, Zhang J, Skepner J, Anandhan S, Zhang X, Xiong L, Trojer P, Aparicio A, Subudhi SK, Allison JP, Zhao H, Sharma P (2018) Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. J Clin Invest 128(9):3813–3818Google Scholar
  88. 88.
    Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R, Dubois G, Mazo A, Croce CM, Canaani E (2002) ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 10(5):1119–1128Google Scholar
  89. 89.
    Yamashita M, Hirahara K, Shinnakasu R, Hosokawa H, Norikane S, Kimura MY, Hasegawa A, Nakayama T (2006) Crucial role of MLL for the maintenance of memory T helper type 2 cell responses. Immunity 24(5):611–622Google Scholar
  90. 90.
    Schaller M, Ito T, Allen RM, Kroetz D, Kittan N, Ptaschinski C, Cavassani K, Carson WF, Godessart N, Grembecka J, Cierpicki T, Dou Y, Kunkel SL (2015) Epigenetic regulation of IL-12-dependent T cell proliferation. J Leukoc Biol 98(4):601–613Google Scholar
  91. 91.
    Placek K, Hu GQ, Cui KR et al (2017) MLL4 prepares the enhancer landscape for Foxp3 induction via chromatin looping. Nat Immunol 18(9):1035–103+Google Scholar
  92. 92.
    Hong SH, Cho YW, Yu LR et al (2007) Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci U S A 104(47):18439–18444Google Scholar
  93. 93.
    Wang CC, Lee JE, Cho YW et al (2012) UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity. Proc Natl Acad Sci U S A 109(38):15324–15329Google Scholar
  94. 94.
    Manna S, Kim JK, Bauge C et al (2015) Histone H3 lysine 27 demethylases Jmjd3 and Utx are required for T-cell differentiation. Nat Commun 6:8152Google Scholar
  95. 95.
    Ntziachristos P, Tsirigos A, Welstead GG, Trimarchi T, Bakogianni S, Xu L, Loizou E, Holmfeldt L, Strikoudis A, King B, Mullenders J, Becksfort J, Nedjic J, Paietta E, Tallman MS, Rowe JM, Tonon G, Satoh T, Kruidenier L, Prinjha R, Akira S, van Vlierberghe P, Ferrando AA, Jaenisch R, Mullighan CG, Aifantis I (2014) Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 514(7523):513–517Google Scholar
  96. 96.
    Li QT, Zou J, Wang MJ et al (2014) Critical role of histone demethylase Jmjd3 in the regulation of CD4(+) T-cell differentiation. Nat Commun 5:5780Google Scholar
  97. 97.
    Liu Z, Cao W, Xu LX et al (2015) The histone H3 lysine-27 demethylase Jmjd3 plays a critical role in specific regulation of Th17 cell differentiation. J Mol Cell Biol 7(6):505–516Google Scholar
  98. 98.
    Wang XH, Zhang YB, Yang XXO et al (2012) Transcription of Il17 and Il17f is controlled by conserved noncoding sequence 2. Immunity 36(1):23–31Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Immunology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of ImmunologyHubei University of MedicineShiyanChina
  3. 3.Department of Otolaryngology-Head and Neck Surgery, Center for Allergic and Inflammatory Diseases, Affiliated Eye and ENT HospitalFudan UniversityShanghaiChina

Personalised recommendations