Advertisement

Off-the-shelf cell therapy with induced pluripotent stem cell-derived natural killer cells

  • Michelle L. Saetersmoen
  • Quirin Hammer
  • Bahram Valamehr
  • Dan S. Kaufman
  • Karl-Johan Malmberg
Review

Abstract

Cell therapy is emerging as a very promising therapeutic modality against cancer, spearheaded by the clinical success of chimeric antigen receptor (CAR) modified T cells for B cell malignancies. Currently, FDA-approved CAR-T cell products are based on engineering of autologous T cells harvested from the patient, typically using a central manufacturing facility for gene editing before the product can be delivered to the clinic and infused to the patients. For a broader implementation of advanced cell therapy and to reduce costs, it would be advantageous to use allogeneic “universal” cell therapy products that can be stored in cell banks and provided upon request, in a manner analogous to biopharmaceutical drug products. In this review, we outline a roadmap for development of off-the-shelf cell therapy based on natural killer (NK) cells derived from induced pluripotent stem cells (iPSCs). We discuss strategies to engineer iPSC-derived NK (iPSC-NK) cells for enhanced functional potential, persistence, and homing.

Keywords

Induced pluripotent stem cells Natural killer cells Off-the-shelf Cell therapy Chimeric antigen receptor Cancer immunotherapy 

Notes

Acknowledgements

This work was supported by grants from the Swedish Research Council, the Swedish Children’s Cancer Society, the Swedish Cancer Society, the Karolinska Institutet, the Norwegian Cancer Society, the Norwegian Research Council, the South-Eastern Norway Regional Health Authority, and the KG Jebsen Center for Cancer Immunotherapy.

Compliance with ethical standards

Conflict of interest

K.J. Malmberg and D.S. Kaufman serve on the Scientific Advisory Board of Fate Therapeutics and obtain research support. Bahram Valamehr is employed by Fate Therapeutics. The respective relationships have been reviewed and managed by University of San Diego California, Oslo University Hospital, and Karolinska Institutet in accordance with the institutions’ conflict of interest policies.

References

  1. 1.
    Nishimura T, Kaneko S, Kawana-Tachikawa A, Tajima Y, Goto H, Zhu D, Nakayama-Hosoya K, Iriguchi S, Uemura Y, Shimizu T, Takayama N, Yamada D, Nishimura K, Ohtaka M, Watanabe N, Takahashi S, Iwamoto A, Koseki H, Nakanishi M, Eto K, Nakauchi H (2013) Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell 12(1):114–126CrossRefGoogle Scholar
  2. 2.
    Shah NN, Baird K, Delbrook CP, Fleisher TA, Kohler ME, Rampertaap S, Lemberg K, Hurley CK, Kleiner DE, Merchant MS, Pittaluga S, Sabatino M, Stroncek DF, Wayne AS, Zhang H, Fry TJ, Mackall CL (2015) Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell-depleted stem cell transplantation. Blood 125(5):784–792PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Ando M, Nakauchi H (2017) 'Off-the-shelf' immunotherapy with iPSC-derived rejuvenated cytotoxic T lymphocytes. Exp Hematol 47:2–12PubMedCrossRefGoogle Scholar
  4. 4.
    Cooper LJ (2010) Off-the-shelf T-cell therapy. Blood 116(23):4741–4743PubMedCrossRefGoogle Scholar
  5. 5.
    Themeli M, Riviere I, Sadelain M (2015) New cell sources for T cell engineering and adoptive immunotherapy. Cell Stem Cell 16(4):357–366PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Themeli M, Kloss CC, Ciriello G, Fedorov VD, Perna F, Gonen M, Sadelain M (2013) Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat Biotechnol 31(10):928–933PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Torikai H, Cooper LJ (2016) Translational implications for off-the-shelf immune cells expressing chimeric antigen receptors. Mol Ther 24(7):1178–1186PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Björklund, A., et al., Complete remission and signs of immunoediting following haploidentical NK Cell theray in refractory high-risk MDS and AML Ell therapy in refractory high-risk MDS and AML 2017. 130(Suppl 1): p. 4458Google Scholar
  9. 9.
    Curti A, Ruggeri L, D'Addio A, Bontadini A, Dan E, Motta MR, Trabanelli S, Giudice V, Urbani E, Martinelli G, Paolini S, Fruet F, Isidori A, Parisi S, Bandini G, Baccarani M, Velardi A, Lemoli RM (2011) Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood 118(12):3273–3279PubMedCrossRefGoogle Scholar
  10. 10.
    Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562):2097–2100CrossRefGoogle Scholar
  11. 11.
    Wu J, Lanier LL (2003) Natural killer cells and cancer. Adv Cancer Res 90:127–156PubMedCrossRefGoogle Scholar
  12. 12.
    Lee SH, Miyagi T, Biron CA (2007) Keeping NK cells in highly regulated antiviral warfare. Trends Immunol 28(6):252–259PubMedCrossRefGoogle Scholar
  13. 13.
    Kiessling R, Klein E, Pross H, Wigzell H (1975) "Natural" killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 5(2):117–121PubMedCrossRefGoogle Scholar
  14. 14.
    Kiessling R, Klein E, Wigzell H (1975) "Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5(2):112–117PubMedCrossRefGoogle Scholar
  15. 15.
    Herberman RB, Nunn ME, Holden HT, Lavrin DH (1975) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 16(2):230–239PubMedCrossRefGoogle Scholar
  16. 16.
    Herberman RB, Nunn ME, Lavrin DH (1975) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 16(2):216–229PubMedCrossRefGoogle Scholar
  17. 17.
    Karre K (1997) How to recognize a foreign submarine. Immunol Rev 155:5–9PubMedCrossRefGoogle Scholar
  18. 18.
    Ljunggren HG, Karre K (1990) In search of the 'missing self': MHC molecules and NK cell recognition. Immunol Today 11(7):237–244CrossRefGoogle Scholar
  19. 19.
    Karre K (2002) NK cells, MHC class I molecules and the missing self. Scand J Immunol 55(3):221–228PubMedCrossRefGoogle Scholar
  20. 20.
    Karre K (2008) Natural killer cell recognition of missing self. Nat Immunol 9(5):477–480PubMedCrossRefGoogle Scholar
  21. 21.
    Elliott JM, Yokoyama WM (2011) Unifying concepts of MHC-dependent natural killer cell education. Trends Immunol 32(8):364–372PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Malmberg KJ, Sohlberg E, Goodridge JP, Ljunggren HG (2017) Immune selection during tumor checkpoint inhibition therapy paves way for NK-cell "missing self" recognition. Immunogenetics 69(8–9):547–556PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Chaplin DD (2010) Overview of the immune response. J Allergy Clin Immunol 125(Suppl 2):S3–23PubMedPubMedCentralGoogle Scholar
  24. 24.
    Colucci F, Caligiuri MA, Di Santo JP (2003) What does it take to make a natural killer? Nat Rev Immunol 3(5):413–425PubMedCrossRefGoogle Scholar
  25. 25.
    Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2(11):850–861PubMedCrossRefGoogle Scholar
  26. 26.
    Vivier E, Nunes JA, Vely F (2004) Natural killer cell signaling pathways. Science 306(5701):1517–1519PubMedCrossRefGoogle Scholar
  27. 27.
    Goodridge JP, Önfelt B, Malmberg KJ (2015) Newtonian cell interactions shape natural killer cell education. Immunol Rev 267(1):197–213PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676CrossRefGoogle Scholar
  29. 29.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920CrossRefGoogle Scholar
  30. 30.
    Ghosh Z, Wilson KD, Wu Y, Hu S, Quertermous T, Wu JC (2010) Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PLoS One 5(2):e8975PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Marchetto MC et al (2009) Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS One 4(9):e7076PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, Richter L, Zhang J, Khvorostov I, Ott V, Grunstein M, Lavon N, Benvenisty N, Croce CM, Clark AT, Baxter T, Pyle AD, Teitell MA, Pelegrini M, Plath K, Lowry WE (2009) Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5(1):111–123PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T, Qi Z, Downey SL, Manos PD, Rossi DJ, Yu J, Hebrok M, Hochedlinger K, Costello JF, Song JS, Ramalho-Santos M (2011) Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 13(5):541–549PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Deng J, Shoemaker R, Xie B, Gore A, LeProust EM, Antosiewicz-Bourget J, Egli D, Maherali N, Park IH, Yu J, Daley GQ, Eggan K, Hochedlinger K, Thomson J, Wang W, Gao Y, Zhang K (2009) Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol 27(4):353–360PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S, Miller J, Schlaeger T, Daley GQ, Feinberg AP (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41(12):1350–1353PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kim K, Zhao R, Doi A, Ng K, Unternaehrer J, Cahan P, Hongguang H, Loh YH, Aryee MJ, Lensch MW, Li H, Collins JJ, Feinberg AP, Daley GQ (2011) Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat Biotechnol 29(12):1117–1119PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Guenther MG, Frampton GM, Soldner F, Hockemeyer D, Mitalipova M, Jaenisch R, Young RA (2010) Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 7(2):249–257PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Newman AM, Cooper JB (2010) Lab-specific gene expression signatures in pluripotent stem cells. Cell Stem Cell 7(2):258–262CrossRefGoogle Scholar
  40. 40.
    Woll PS, Martin CH, Miller JS, Kaufman DS (2005) Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. J Immunol 175(8):5095–5103PubMedCrossRefGoogle Scholar
  41. 41.
    Woll PS, Grzywacz B, Tian X, Marcus RK, Knorr DA, Verneris MR, Kaufman DS (2009) Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood 113(24):6094–6101PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Valamehr B, Robinson M, Abujarour R, Rezner B, Vranceanu F, le T, Medcalf A, Lee TT, Fitch M, Robbins D, Flynn P (2014) Platform for induction and maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells. Stem Cell Reports 2(3):366–381PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Knorr DA, Ni Z, Hermanson D, Hexum MK, Bendzick L, Cooper LJN, Lee DA, Kaufman DS (2013) Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med 2(4):274–283PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Nguyen S, Beziat V, Dhedin N, Kuentz M, Vernant JP, Debre P, Vieillard V (2009) HLA-E upregulation on IFN-gamma-activated AML blasts impairs CD94/NKG2A-dependent NK cytolysis after haplo-mismatched hematopoietic SCT. Bone Marrow Transplant 43((9):693–699PubMedCrossRefGoogle Scholar
  45. 45.
    Björkström NK et al (2010) Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 116(19):3853–3864PubMedCrossRefGoogle Scholar
  46. 46.
    Beziat V, Traherne JA, Liu LL, Jayaraman J, Enqvist M, Larsson S, Trowsdale J, Malmberg KJ (2013) Influence of KIR gene copy number on natural killer cell education. Blood 121(23):4703–4707PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Béziat V, Traherne J, Malmberg JA, Ivarsson MA, Björkström NK, Retière C, Ljunggren HG, Michaëlsson J, Trowsdale J, Malmberg KJ (2014) Tracing dynamic expansion of human NK-cell subsets by high-resolution analysis of KIR repertoires and cellular differentiation. Eur J Immunol 44(7):2192–2196PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Li, Y., et al., Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell, 2018. 23(2): p. 181–192 e5PubMedGoogle Scholar
  49. 49.
    Hermanson DL, Bendzick L, Pribyl L, McCullar V, Vogel RI, Miller JS, Geller MA, Kaufman DS (2016) Induced pluripotent stem cell-derived natural killer cells for treatment of ovarian Cancer. Stem Cells 34(1):93–101PubMedCrossRefGoogle Scholar
  50. 50.
    Zeng J, Tang SY, Toh LL, Wang S (2017) Generation of "off-the-shelf" natural killer cells from peripheral blood cell-derived induced pluripotent stem cells. Stem Cell Reports 9(6):1796–1812PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Daher M, Rezvani K (2018) Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Curr Opin Immunol 51:146–153PubMedCrossRefGoogle Scholar
  52. 52.
    Hermanson DL, Kaufman DS (2015) Utilizing chimeric antigen receptors to direct natural killer cell activity. Front Immunol 6:195PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sadelain M, Riviere I, Brentjens R (2003) Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer 3(1):35–45PubMedCrossRefGoogle Scholar
  54. 54.
    Brentjens, R.J., et al., CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med, 2013. 5(177): p. 177ra38Google Scholar
  55. 55.
    Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Sadelain M, Brentjens R, Riviere I (2009) The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol 21(2):215–223PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Maher J, Brentjens RJ, Gunset G, Rivière I, Sadelain M (2002) Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol 20(1):70–75CrossRefGoogle Scholar
  58. 58.
    Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M, la Perle K, Quintas-Cardama A, Larson SM, Sadelain M (2007) Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res 13(18 Pt 1):5426–5435PubMedCrossRefGoogle Scholar
  59. 59.
    Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG, Lindgren CG, Lin Y, Pagel JM, Budde LE, Raubitschek A, Forman SJ, Greenberg PD, Riddell SR, Press OW (2012) CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 119(17):3940–3950PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Pule MA et al (2005) A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 12(5):933–941PubMedCrossRefGoogle Scholar
  61. 61.
    Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, Varela-Rohena A, Haines KM, Heitjan DF, Albelda SM, Carroll RG, Riley JL, Pastan I, June CH (2009) Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci U S A 106(9):3360–3365PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Zhong, X.S., et al., Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol Ther, 2010. 18(2): p. 413–420PubMedCrossRefGoogle Scholar
  63. 63.
    Yeku OO, Brentjens RJ (2016) Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem Soc Trans 44(2):412–418PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Oei VYS, Siernicka M, Graczyk-Jarzynka A, Hoel HJ, Yang W, Palacios D, Almåsbak H, Bajor M, Clement D, Brandt L, Önfelt B, Goodridge J, Winiarska M, Zagozdzon R, Olweus J, Kyte JA, Malmberg KJ (2018) Intrinsic functional potential of NK-cell subsets constrains retargeting driven by chimeric antigen receptors. Cancer Immunol Res 6(4):467–480PubMedCrossRefGoogle Scholar
  65. 65.
    Paust S, Blish CA, Reeves RK (2017) Redefining memory: building the case for adaptive NK cells. J Virol 91(20)Google Scholar
  66. 66.
    Liu LL, Béziat V, Oei VYS, Pfefferle A, Schaffer M, Lehmann S, Hellström-Lindberg E, Söderhäll S, Heyman M, Grandér D, Malmberg KJ (2017) Ex vivo expanded adaptive NK cells effectively kill primary acute lymphoblastic leukemia cells. Cancer Immunol Res 5(8):654–665PubMedCrossRefGoogle Scholar
  67. 67.
    Liu LL, Pfefferle A, Yi Sheng VO, Björklund AT, Béziat V, Goodridge JP, Malmberg KJ (2015) Harnessing adaptive natural killer cells in cancer immunotherapy. Mol Oncol 9(10):1904–1917PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Gardner R, Wu D, Cherian S, Fang M, Hanafi LA, Finney O, Smithers H, Jensen MC, Riddell SR, Maloney DG, Turtle CJ (2016) Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127(20):2406–2410PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Jing Y, Ni Z, Wu J, Higgins LA, Markowski TW, Kaufman DS, Walcheck B (2015) Identification of an ADAM17 cleavage region in human CD16 (FcgammaRIII) and the engineering of a non-cleavable version of the receptor in NK cells. PLoS One 10(3):e0121788PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Romee, R., et al., Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med, 2016. 8(357): p. 357ra123PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Bachanova V, Cooley S, Defor TE, Verneris MR, Zhang B, McKenna DH, Curtsinger J, Panoskaltsis-Mortari A, Lewis D, Hippen K, McGlave P, Weisdorf DJ, Blazar BR, Miller JS (2014) Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood 123(25):3855–3863PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney S, Yun GH, Fautsch SK, McKenna D, le C, Defor TE, Burns LJ, Orchard PJ, Blazar BR, Wagner JE, Slungaard A, Weisdorf DJ, Okazaki IJ, McGlave P (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105(8):3051–3057CrossRefGoogle Scholar
  73. 73.
    Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366(9502):2019–2025CrossRefGoogle Scholar
  74. 74.
    Nakatsuji N, Nakajima F, Tokunaga K (2008) HLA-haplotype banking and iPS cells. Nat Biotechnol 26(7):739–740PubMedCrossRefGoogle Scholar
  75. 75.
    Gornalusse GG, Hirata RK, Funk SE, Riolobos L, Lopes VS, Manske G, Prunkard D, Colunga AG, Hanafi LA, Clegg DO, Turtle C, Russell DW (2017) HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat Biotechnol 35:765–772PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Fauriat C, Andersson S, Bjorklund AT, Carlsten M, Schaffer M, Bjorkstrom NK, Baumann BC, Michaelsson J, Ljunggren HG, Malmberg KJ (2008) Estimation of the size of the alloreactive NK cell repertoire: studies in individuals homozygous for the group A KIR haplotype. J Immunol 181(9)):6010–6019PubMedCrossRefGoogle Scholar
  77. 77.
    Boudreau JE, Liu XR, Zhao Z, Zhang A, Shultz LD, Greiner DL, Dupont B, Hsu KC (2016) Cell-extrinsic MHC class I molecule engagement augments human NK cell education programmed by cell-intrinsic MHC class I. Immunity 45(2):280–291PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT, Seipp CA, Simpson CG, White DE (1987) A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 316(15):889–897PubMedCrossRefGoogle Scholar
  79. 79.
    Ghiringhelli F, Ménard C, Terme M, Flament C, Taieb J, Chaput N, Puig PE, Novault S, Escudier B, Vivier E, Lecesne A, Robert C, Blay JY, Bernard J, Caillat-Zucman S, Freitas A, Tursz T, Wagner-Ballon O, Capron C, Vainchencker W, Martin F, Zitvogel L (2005) CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202(8):1075–1085PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Waldmann TA, Dubois S, Tagaya Y (2001) Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14(2):105–110PubMedGoogle Scholar
  81. 81.
    Fehniger TA, Caligiuri MA (2001) Interleukin 15: biology and relevance to human disease. Blood 97(1):14–32PubMedCrossRefGoogle Scholar
  82. 82.
    Wrangle JM, Velcheti V, Patel MR, Garrett-Mayer E, Hill EG, Ravenel JG, Miller JS, Farhad M, Anderton K, Lindsey K, Taffaro-Neskey M, Sherman C, Suriano S, Swiderska-Syn M, Sion A, Harris J, Edwards AR, Rytlewski JA, Sanders CM, Yusko EC, Robinson MD, Krieg C, Redmond WL, Egan JO, Rhode PR, Jeng EK, Rock AD, Wong HC, Rubinstein MP (2018) ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol 19(5):694–704PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Romee R, Cooley S, Berrien-Elliott MM, Westervelt P, Verneris MR, Wagner JE, Weisdorf DJ, Blazar BR, Ustun C, DeFor TE, Vivek S, Peck L, DiPersio JF, Cashen AF, Kyllo R, Musiek A, Schaffer A, Anadkat MJ, Rosman I, Miller D, Egan JO, Jeng EK, Rock A, Wong HC, Fehniger TA, Miller JS (2018) First-in-human phase 1 clinical study of the IL-15 Superagonist complex ALT-803 to treat relapse after transplantation. Blood 131:2515–2527PubMedCrossRefGoogle Scholar
  84. 84.
    Beider K, Nagler A, Wald O, Franitza S, Dagan-Berger M, Wald H, Giladi H, Brocke S, Hanna J, Mandelboim O, Darash-Yahana M, Galun E, Peled A (2003) Involvement of CXCR4 and IL-2 in the homing and retention of human NK and NK T cells to the bone marrow and spleen of NOD/SCID mice. Blood 102(6):1951–1958PubMedCrossRefGoogle Scholar
  85. 85.
    Groth A, Klöss S, Pogge von Strandmann E, Koehl U, Koch J (2011) Mechanisms of tumor and viral immune escape from natural killer cell-mediated surveillance. J Innate Immun 3(4):344–354PubMedCrossRefGoogle Scholar
  86. 86.
    Liu E, Tong Y, Dotti G, Shaim H, Savoldo B, Mukherjee M, Orange J, Wan X, Lu X, Reynolds A, Gagea M, Banerjee P, Cai R, Bdaiwi MH, Basar R, Muftuoglu M, Li L, Marin D, Wierda W, Keating M, Champlin R, Shpall E, Rezvani K (2018) Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32(2):520–531PubMedCrossRefGoogle Scholar
  87. 87.
    Mao Y, van Hoef V, Zhang X, Wennerberg E, Lorent J, Witt K, Masvidal L, Liang S, Murray S, Larsson O, Kiessling R, Lundqvist A (2016) IL-15 activates mTOR and primes stress-activated gene expression leading to prolonged antitumor capacity of NK cells. Blood 128(11):1475–1489PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Fisher B, Packard BS, Read EJ, Carrasquillo JA, Carter CS, Topalian SL, Yang JC, Yolles P, Larson SM, Rosenberg SA (1989) Tumor localization of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J Clin Oncol 7(2):250–261PubMedCrossRefGoogle Scholar
  89. 89.
    Pockaj BA, Sherry RM, Wei JP, Yannelli JR, Carter CS, Leitman SF, Carasquillo JA, Steinberg SM, Rosenberg SA, Yang JC (1994) Localization of 111indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy. Augmentation with cyclophosphamide and correlation with response. Cancer 73(6):1731–1737PubMedCrossRefGoogle Scholar
  90. 90.
    Vujanovic NL, Basse P, Herberman RB, Whiteside TL (1996) Antitumor functions of natural killer cells and control of metastases. Methods 9(2):394–408PubMedCrossRefGoogle Scholar
  91. 91.
    Villegas FR, Coca S, Villarrubia VG, Jiménez R, Chillón ḾJ, Jareño J, Zuil M, Callol L (2002) Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35(1):23–28PubMedCrossRefGoogle Scholar
  92. 92.
    Coca S, Perez-Piqueras J, Martinez D, Colmenarejo A, Saez MA, Vallejo C, Martos JA, Moreno M (1997) The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 79(12):2320–2328CrossRefGoogle Scholar
  93. 93.
    Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Che X, Iwashige H, Aridome K, Hokita S, Aikou T (2000) Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88(3):577–583CrossRefGoogle Scholar
  94. 94.
    Rusakiewicz S, Semeraro M, Sarabi M, Desbois M, Locher C, Mendez R, Vimond N, Concha A, Garrido F, Isambert N, Chaigneau L, le Brun-Ly V, Dubreuil P, Cremer I, Caignard A, Poirier-Colame V, Chaba K, Flament C, Halama N, Jager D, Eggermont A, Bonvalot S, Commo F, Terrier P, Opolon P, Emile JF, Coindre JM, Kroemer G, Chaput N, le Cesne A, Blay JY, Zitvogel L (2013) Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors. Cancer Res 73(12):3499–3510PubMedCrossRefGoogle Scholar
  95. 95.
    Wennerberg E, Kremer V, Childs R, Lundqvist A (2015) CXCL10-induced migration of adoptively transferred human natural killer cells toward solid tumors causes regression of tumor growth in vivo. Cancer Immunol Immunother 64(2):225–235PubMedCrossRefGoogle Scholar
  96. 96.
    Wendel M, Galani IE, Suri-Payer E, Cerwenka A (2008) Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res 68(20):8437–8445CrossRefGoogle Scholar
  97. 97.
    Peng W, Liu C, Xu C, Lou Y, Chen J, Yang Y, Yagita H, Overwijk WW, Lizee G, Radvanyi L, Hwu P (2012) PD-1 blockade enhances T-cell migration to tumors by elevating IFN-gamma inducible chemokines. Cancer Res 72(20):5209–5218PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Fujihara A, Kurooka M, Miki T, Kaneda Y (2008) Intratumoral injection of inactivated Sendai virus particles elicits strong antitumor activity by enhancing local CXCL10 expression and systemic NK cell activation. Cancer Immunol Immunother 57(1):73–84PubMedCrossRefGoogle Scholar
  99. 99.
    Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180(5):3132–3139CrossRefGoogle Scholar
  100. 100.
    Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, Sun Y, Zhao E, Vatan L, Szeliga W, Kotarski J, Tarkowski R, Dou Y, Cho K, Hensley-Alford S, Munkarah A, Liu R, Zou W (2015) Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527(7577):249–253PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Nagarsheth N, Peng D, Kryczek I, Wu K, Li W, Zhao E, Zhao L, Wei S, Frankel T, Vatan L, Szeliga W, Dou Y, Owens S, Marquez V, Tao K, Huang E, Wang G, Zou W (2016) PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in Colon Cancer. Cancer Res 76(2):275–282PubMedCrossRefGoogle Scholar
  102. 102.
    Bottcher JP et al (2018) NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting Cancer immune control. Cell 172(5):1022–1037 e14 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Gill RG (2010) NK cells: elusive participants in transplantation immunity and tolerance. Curr Opin Immunol 22(5):649–654PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Pallmer K, Oxenius A (2016) Recognition and regulation of T cells by NK cells. Front Immunol 7:251PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Lardner A (2001) The effects of extracellular pH on immune function. J Leukoc Biol 69(4):522–530PubMedGoogle Scholar
  106. 106.
    Muller B, Fischer B, Kreutz W (2000) An acidic microenvironment impairs the generation of non-major histocompatibility complex-restricted killer cells. Immunology 99(3):375–384PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Noman MZ, Messai Y, Carre T, Akalay I, Meron M, Janji B, Hasmim M, Chouaib S (2011) Microenvironmental hypoxia orchestrating the cell stroma cross talk, tumor progression and antitumor response. Crit Rev Immunol 31(5):357–377PubMedCrossRefGoogle Scholar
  108. 108.
    Terme M, Chaput N, Combadiere B, Ma A, Ohteki T, Zitvogel L (2008) Regulatory T cells control dendritic cell/NK cell cross-talk in lymph nodes at the steady state by inhibiting CD4+ self-reactive T cells. J Immunol 180(7):4679–4686PubMedCrossRefGoogle Scholar
  109. 109.
    Li MO, Wan YY, Sanjabi S, Robertson AKL, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146PubMedCrossRefGoogle Scholar
  110. 110.
    Viel S et al (2016) TGF-beta inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal 9(415):ra19PubMedCrossRefGoogle Scholar
  111. 111.
    Deng B, Zhu JM, Wang Y, Liu TT, Ding YB, Xiao WM, Lu GT, Bo P, Shen XZ (2013) Intratumor hypoxia promotes immune tolerance by inducing regulatory T cells via TGF-beta1 in gastric cancer. PLoS One 8(5):e63777PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Quatromoni JG, Eruslanov E (2012) Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am J Transl Res 4(4):376–389PubMedPubMedCentralGoogle Scholar
  113. 113.
    Baginska J, Viry E, Berchem G, Poli A, Noman MZ, van Moer K, Medves S, Zimmer J, Oudin A, Niclou SP, Bleackley RC, Goping IS, Chouaib S, Janji B (2013) Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc Natl Acad Sci U S A 110(43):17450–17455PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Madar S, Goldstein I, Rotter V (2013) 'Cancer associated fibroblasts'—more than meets the eye. Trends Mol Med 19(8):447–453PubMedCrossRefGoogle Scholar
  115. 115.
    Madar S, Goldstein I, Rotter V (2013) 'Cancer associated fibroblasts'—more than meets the eye. Trends Mol Med 19(8):447–453PubMedCrossRefGoogle Scholar
  116. 116.
    Augsten M (2014) Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol 4:62PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Franco OE, Shaw AK, Strand DW, Hayward SW (2010) Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21(1):33–39CrossRefGoogle Scholar
  118. 118.
    Rasanen K, Vaheri A (2010) Activation of fibroblasts in cancer stroma. Exp Cell Res 316(17):2713–2722PubMedCrossRefGoogle Scholar
  119. 119.
    Yang B, Liu H, Shi W, Wang Z, Sun S, Zhang G, Hu Y, Liu T, Jiao S (2013) Blocking transforming growth factor-beta signaling pathway augments antitumor effect of adoptive NK-92 cell therapy. Int Immunopharmacol 17(2):198–204PubMedCrossRefGoogle Scholar
  120. 120.
    Otegbeye F, Ojo E, Moreton S, Mackowski N, Lee DA, de Lima M, Wald DN (2018) Inhibiting TGF-beta signaling preserves the function of highly activated, in vitro expanded natural killer cells in AML and colon cancer models. PLoS One 13(1):e0191358PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Murray S, Lundqvist A (2016) Targeting the tumor microenvironment to improve natural killer cell-based immunotherapies: on being in the right place at the right time, with resilience. Hum Vaccin Immunother 12(3):607–611PubMedCrossRefGoogle Scholar
  122. 122.
    Cichocki F, Wu CY, Zhang B, Felices M, Tesi B, Tuininga K, Dougherty P, Taras E, Hinderlie P, Blazar BR, Bryceson YT, Miller JS (2018) ARID5B regulates metabolic programming in human adaptive NK cells. J Exp Med 215(9):2379–2395PubMedCrossRefGoogle Scholar
  123. 123.
    Balzarolo M, Watzl C, Medema JP, Wolkers MC (2013) NAB2 and EGR-1 exert opposite roles in regulating TRAIL expression in human natural killer cells. Immunol Lett 151(1–2):61–67PubMedCrossRefGoogle Scholar
  124. 124.
    Goodridge JP et al (2018) Modulation of secretory lysosomes during NK cell education leads to accumulation of Granzyme B and enhanced functional potential. In: bioRxivGoogle Scholar
  125. 125.
    Forslund, E., et al., Microchip-based single-cell imaging reveals that CD56dimCD57-KIR-NKG2A+ NK cells have more dynamic migration associated with increased target cell conjugation and probability of killing compared to CD56dimCD57-KIR-NKG2A- NK cells. J Immunol, 2015. 195(7): p. 3374–3381PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Michelle L. Saetersmoen
    • 1
  • Quirin Hammer
    • 2
  • Bahram Valamehr
    • 3
  • Dan S. Kaufman
    • 4
  • Karl-Johan Malmberg
    • 1
    • 2
    • 5
  1. 1.The KG Jebsen Center for Cancer ImmunotherapyUniversity of OsloOsloNorway
  2. 2.Department of Medicine, HuddingeKarolinska InstituteSolnaSweden
  3. 3.Fate Therapeutics Inc.San DiegoUSA
  4. 4.Department of MedicineUniversity of California San DiegoLa JollaUSA
  5. 5.Institute for Cancer researchOslo University HospitalOsloNorway

Personalised recommendations