Advertisement

Female predisposition to TLR7-driven autoimmunity: gene dosage and the escape from X chromosome inactivation

  • Mélanie Souyris
  • José E. Mejía
  • Julie Chaumeil
  • Jean-Charles GuéryEmail author
Review

Abstract

Women develop stronger immune responses than men, with positive effects on the resistance to viral or bacterial infections but magnifying also the susceptibility to autoimmune diseases like systemic lupus erythematosus (SLE). In SLE, the dosage of the endosomal Toll-like receptor 7 (TLR7) is crucial. Murine models have shown that TLR7 overexpression suffices to induce spontaneous lupus-like disease. Conversely, suppressing TLR7 in lupus-prone mice abolishes SLE development. TLR7 is encoded by a gene on the X chromosome gene, denoted TLR7 in humans and Tlr7 in the mouse, and expressed in plasmacytoid dendritic cells (pDC), monocytes/macrophages, and B cells. The receptor recognizes single-stranded RNA, and its engagement promotes B cell maturation and the production of pro-inflammatory cytokines and antibodies. In female mammals, each cell randomly inactivates one of its two X chromosomes to equalize gene dosage with XY males. However, 15 to 23% of X-linked human genes escape X chromosome inactivation so that both alleles can be expressed simultaneously. It has been hypothesized that biallelic expression of X-linked genes could occur in female immune cells, hence fostering harmful autoreactive and inflammatory responses. We review here the current knowledge of the role of TLR7 in SLE, and recent evidence demonstrating that TLR7 escapes from X chromosome inactivation in pDCs, monocytes, and B lymphocytes from women and Klinefelter syndrome men. Female B cells where TLR7 is thus biallelically expressed display higher TLR7-driven functional responses, connecting the presence of two X chromosomes with the enhanced immunity of women and their increased susceptibility to TLR7-dependent autoimmune syndromes.

Keywords

Sexual dimorphism Systemic lupus erythematosus Toll-like receptor 7 X chromosome dosage X chromosome inactivation escape 

Notes

Author contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Funding

This work was supported by grants from Fondation pour la Recherche Médicale (DEQ20131029169 and DEQ20180339187), Fonds de Dotation CSL Behring, Fondation Arthritis, SIDACTION and Fondation ARC.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Libert C, Dejager L, Pinheiro I (2010) The X chromosome in immune functions: when a chromosome makes the difference. Nat Rev Immunol 10(8):594–604Google Scholar
  2. 2.
    Markle JG, Fish EN (2014) SeXX matters in immunity. Trends Immunol 35(3):97–104Google Scholar
  3. 3.
    Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16(10):626–638Google Scholar
  4. 4.
    Laffont S, Garnier L, Lelu K, Guery JC (2015) Estrogen-mediated protection of experimental autoimmune encephalomyelitis: lessons from the dissection of estrogen receptor-signaling in vivo. Biom J 38(3):194–205Google Scholar
  5. 5.
    Laffont S, Seillet C, Guery JC (2017) Estrogen receptor-dependent regulation of dendritic cell development and function. Front Immunol 8:108PubMedPubMedCentralGoogle Scholar
  6. 6.
    Laffont S, Blanquart E, Guery JC (2017) Sex differences in asthma: a key role of androgen-signaling in group 2 innate lymphoid cells. Front Immunol 8:1069PubMedPubMedCentralGoogle Scholar
  7. 7.
    Augui S, Nora EP, Heard E (2011) Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet 12(6):429–442PubMedGoogle Scholar
  8. 8.
    Chaumeil J, Augui S, Chow JC, Heard E (2008) Combined immunofluorescence, RNA fluorescent in situ hybridization, and DNA fluorescent in situ hybridization to study chromatin changes, transcriptional activity, nuclear organization, and X-chromosome inactivation. Methods Mol Biol 463:297–308PubMedGoogle Scholar
  9. 9.
    Fish EN (2008) The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol 8(9):737–744Google Scholar
  10. 10.
    Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434(7031):400–404Google Scholar
  11. 11.
    Wang J, Syrett CM, Kramer MC, Basu A, Atchison ML, Anguera MC (2016) Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc Natl Acad Sci U S A 113(14):E2029–E2038PubMedPubMedCentralGoogle Scholar
  12. 12.
    Souyris M, Cenac C, Azar P, Daviaud D, Canivet A, Grunenwald S, Pienkowski C, Chaumeil J, Mejia JE, Guery JC (2018) TLR7 escapes X chromosome inactivation in immune cells. Sci Immunol 3(19):eaap8855PubMedGoogle Scholar
  13. 13.
    Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B (2007) Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 179(9):6352–6358PubMedGoogle Scholar
  14. 14.
    McDonald G, Cabal N, Vannier A, Umiker B, Yin RH, Orjalo AV Jr, Johansson HE, Han JH, Imanishi-Kari T (2015) Female bias in systemic lupus erythematosus is associated with the differential expression of X-linked Toll-like receptor 8. Front Immunol 6:457PubMedPubMedCentralGoogle Scholar
  15. 15.
    Savarese F, Flahndorfer K, Jaenisch R, Busslinger M, Wutz A (2006) Hematopoietic precursor cells transiently reestablish permissiveness for X inactivation. Mol Cell Biol 26(19):7167–7177PubMedPubMedCentralGoogle Scholar
  16. 16.
    Syrett CM, Sindhava V, Hodawadekar S, Myles A, Liang G, Zhang Y, Nandi S, Cancro M, Atchison M, Anguera MC (2017) Loss of Xist RNA from the inactive X during B cell development is restored in a dynamic YY1-dependent two-step process in activated B cells. PLoS Genet 13(10):e1007050PubMedPubMedCentralGoogle Scholar
  17. 17.
    Qu K, Zaba LC, Giresi PG, Li R, Longmire M, Kim YH, Greenleaf WJ, Chang HY (2015) Individuality and variation of personal regulomes in primary human T cells. Cell Syst 1(1):51–61PubMedPubMedCentralGoogle Scholar
  18. 18.
    Theofilopoulos AN, Kono DH, Baccala R (2017) The multiple pathways to autoimmunity. Nat Immunol 18(7):716–724PubMedPubMedCentralGoogle Scholar
  19. 19.
    Green NM, Marshak-Rothstein A (2011) Toll-like receptor driven B cell activation in the induction of systemic autoimmunity. Semin Immunol 23(2):106–112PubMedPubMedCentralGoogle Scholar
  20. 20.
    Subramanian S, Tus K, Li QZ, Wang A, Tian XH, Zhou J, Liang C, Bartov G, McDaniel LD, Zhou XJ, Schultz RA, Wakeland EK (2006) A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci U S A 103(26):9970–9975PubMedPubMedCentralGoogle Scholar
  21. 21.
    Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S (2006) Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312(5780):1669–1672PubMedGoogle Scholar
  22. 22.
    Deane JA, Pisitkun P, Barrett RS, Feigenbaum L, Town T, Ward JM, Flavell RA, Bolland S (2007) Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 27(5):801–810PubMedPubMedCentralGoogle Scholar
  23. 23.
    Petri M, Orbai AM, Alarcón Graciela S, Gordon C, Merrill Joan T, Fortin Paul R, Bruce Ian N, Isenberg D, Wallace Daniel J, Nived O, Sturfelt G, Ramsey-Goldman R, Bae SC, Hanly John G, Sánchez-Guerrero J, Clarke A, Aranow C, Manzi S, Urowitz M, Gladman D, Kalunian K, Costner M, Werth Victoria P, Zoma A, Bernatsky S, Ruiz-Irastorza G, Khamashta Munther A, Jacobsen S, Buyon Jill P, Maddison P, Dooley Mary A, van Vollenhoven Ronald F, Ginzler E, Stoll T, Peschken C, Jorizzo Joseph L, Callen Jeffrey P, Lim SS, Fessler Barri J, Inanc M, Kamen Diane L, Rahman A, Steinsson K, Franks Andrew G, Sigler L, Hameed S, Fang H, Pham N, Brey R, Weisman Michael H, McGwin G, Magder Laurence S (2012) Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 64(8):2677–2686PubMedPubMedCentralGoogle Scholar
  24. 24.
    Hua J, Kirou K, Lee C, Crow MK (2006) Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies. Arthritis Rheum 54(6):1906–1916PubMedGoogle Scholar
  25. 25.
    Hooks JJ, Moutsopoulos HM, Geis SA, Stahl NI, Decker JL, Notkins AL (1979) Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med 301(1):5–8PubMedGoogle Scholar
  26. 26.
    Ytterberg SR, Schnitzer TJ (1982) Serum interferon levels in patients with systemic lupus erythematosus. Arthritis Rheum 25(4):401–406PubMedGoogle Scholar
  27. 27.
    Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, Shark KB, Grande WJ, Hughes KM, Kapur V, Gregersen PK, Behrens TW (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 100(5):2610–2615PubMedPubMedCentralGoogle Scholar
  28. 28.
    Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, Pascual V (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 197(6):711–723PubMedPubMedCentralGoogle Scholar
  29. 29.
    Kirou KA, Lee C, George S, Louca K, Papagiannis IG, Peterson MG, Ly N, Woodward RN, Fry KE, Lau AY, Prentice JG, Wohlgemuth JG, Crow MK (2004) Coordinate overexpression of interferon-alpha-induced genes in systemic lupus erythematosus. Arthritis Rheum 50(12):3958–3967PubMedGoogle Scholar
  30. 30.
    Gilliet M, Cao W, Liu YJ (2008) Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8(8):594–606PubMedGoogle Scholar
  31. 31.
    Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J (2001) Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 294(5546):1540–1543PubMedGoogle Scholar
  32. 32.
    Marshak-Rothstein A (2006) Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 6(11):823–835PubMedGoogle Scholar
  33. 33.
    Swiecki M, Colonna M (2015) The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 15(8):471–485PubMedPubMedCentralGoogle Scholar
  34. 34.
    Banchereau J, Pascual V (2006) Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25(3):383–392PubMedGoogle Scholar
  35. 35.
    Simchoni N, Cunningham-Rundles C (2015) TLR7- and TLR9-responsive human B cells share phenotypic and genetic characteristics. J Immunol 194(7):3035–3044PubMedPubMedCentralGoogle Scholar
  36. 36.
    Hung T, Pratt GA, Sundararaman B, Townsend MJ, Chaivorapol C, Bhangale T, Graham RR, Ortmann W, Criswell LA, Yeo GW, Behrens TW (2015) The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science 350(6259):455–459PubMedPubMedCentralGoogle Scholar
  37. 37.
    Green NM, Laws A, Kiefer K, Busconi L, Kim YM, Brinkmann MM, Trail EH, Yasuda K, Christensen SR, Shlomchik MJ, Vogel S, Connor JH, Ploegh H, Eilat D, Rifkin IR, van Seventer JM, Marshak-Rothstein A (2009) Murine B cell response to TLR7 ligands depends on an IFN-beta feedback loop. J Immunol 183(3):1569–1576PubMedPubMedCentralGoogle Scholar
  38. 38.
    Rawlings DJ, Schwartz MA, Jackson SW, Meyer-Bahlburg A (2012) Integration of B cell responses through Toll-like receptors and antigen receptors. Nat Rev Immunol 12(4):282–294PubMedPubMedCentralGoogle Scholar
  39. 39.
    Fairhurst AM, Hwang SH, Wang A, Tian XH, Boudreaux C, Zhou XJ, Casco J, Li QZ, Connolly JE, Wakeland EK (2008) Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur J Immunol 38(7):1971–1978PubMedPubMedCentralGoogle Scholar
  40. 40.
    Santiago-Raber ML, Kikuchi S, Borel P, Uematsu S, Akira S, Kotzin BL, Izui S (2008) Evidence for genes in addition to Tlr7 in the Yaa translocation linked with acceleration of systemic lupus erythematosus. J Immunol 181(2):1556–1562PubMedGoogle Scholar
  41. 41.
    Christensen SR, Shupe J, Nickerson K, Kashgarian M, Flavell RA, Shlomchik MJ (2006) Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25(3):417–428PubMedGoogle Scholar
  42. 42.
    Walsh ER, Pisitkun P, Voynova E, Deane JA, Scott BL, Caspi RR, Bolland S (2012) Dual signaling by innate and adaptive immune receptors is required for TLR7-induced B-cell-mediated autoimmunity. Proc Natl Acad Sci U S A 109(40):16276–16281PubMedPubMedCentralGoogle Scholar
  43. 43.
    Anderson KG, Mayer-Barber K, Sung H, Beura L, James BR, Taylor JJ, Qunaj L, Griffith TS, Vezys V, Barber DL, Masopust D (2014) Intravascular staining for discrimination of vascular and tissue leukocytes. Nat Protoc 9(1):209–222PubMedPubMedCentralGoogle Scholar
  44. 44.
    Jackson SW, Scharping NE, Kolhatkar NS, Khim S, Schwartz MA, Li QZ, Hudkins KL, Alpers CE, Liggitt D, Rawlings DJ (2014) Opposing impact of B cell-intrinsic TLR7 and TLR9 signals on autoantibody repertoire and systemic inflammation. J Immunol 192(10):4525–4532PubMedPubMedCentralGoogle Scholar
  45. 45.
    Soni C, Wong EB, Domeier PP, Khan TN, Satoh T, Akira S, Rahman ZS (2014) B cell-intrinsic TLR7 signaling is essential for the development of spontaneous germinal centers. J Immunol 193(9):4400–4414PubMedPubMedCentralGoogle Scholar
  46. 46.
    Ronnblom L (2011) The type I interferon system in the etiopathogenesis of autoimmune diseases. Ups J Med Sci 116(4):227–237PubMedPubMedCentralGoogle Scholar
  47. 47.
    Rowland SL, Riggs JM, Gilfillan S, Bugatti M, Vermi W, Kolbeck R, Unanue ER, Sanjuan MA, Colonna M (2014) Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model. J Exp Med 211(10):1977–1991PubMedPubMedCentralGoogle Scholar
  48. 48.
    Sisirak V, Ganguly D, Lewis KL, Couillault C, Tanaka L, Bolland S, D'Agati V, Elkon KB, Reizis B (2014) Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus. J Exp Med 211(10):1969–1976PubMedPubMedCentralGoogle Scholar
  49. 49.
    Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, Punaro M, Baisch J, Guiducci C, Coffman RL, Barrat FJ, Banchereau J, Pascual V (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 3(73):73ra20PubMedPubMedCentralGoogle Scholar
  50. 50.
    Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, Meller S, Chamilos G, Sebasigari R, Riccieri V, Bassett R, Amuro H, Fukuhara S, Ito T, Liu YJ, Gilliet M (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 3(73):73ra19PubMedPubMedCentralGoogle Scholar
  51. 51.
    Craft JE (2011) Dissecting the immune cell mayhem that drives lupus pathogenesis. Sci Transl Med 3(73):73ps9PubMedPubMedCentralGoogle Scholar
  52. 52.
    Jacquemin C, Schmitt N, Contin-Bordes C, Liu Y, Narayanan P, Seneschal J, Maurouard T, Dougall D, Davizon ES, Dumortier H, Douchet I, Raffray L, Richez C, Lazaro E, Duffau P, Truchetet ME, Khoryati L, Mercie P, Couzi L, Merville P, Schaeverbeke T, Viallard JF, Pellegrin JL, Moreau JF, Muller S, Zurawski S, Coffman RL, Pascual V, Ueno H, Blanco P (2015) OX40 ligand contributes to human lupus pathogenesis by promoting T follicular helper response. Immunity 42(6):1159–1170PubMedPubMedCentralGoogle Scholar
  53. 53.
    Pasare C, Medzhitov R (2005) Control of B-cell responses by Toll-like receptors. Nature 438(7066):364–368PubMedGoogle Scholar
  54. 54.
    Ruprecht CR, Lanzavecchia A (2006) Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur J Immunol 36(4):810–816PubMedGoogle Scholar
  55. 55.
    Hwang IY, Park C, Harrison K, Kehrl JH (2009) TLR4 signaling augments B lymphocyte migration and overcomes the restriction that limits access to germinal center dark zones. J Exp Med 206(12):2641–2657PubMedPubMedCentralGoogle Scholar
  56. 56.
    Bernasconi NL, Traggiai E, Lanzavecchia A (2002) Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298(5601):2199–2202PubMedGoogle Scholar
  57. 57.
    Browne EP (2011) Toll-like receptor 7 controls the anti-retroviral germinal center response. PLoS Pathog 7(10):e1002293PubMedPubMedCentralGoogle Scholar
  58. 58.
    DeFranco AL, Rookhuizen DC, Hou B (2012) Contribution of Toll-like receptor signaling to germinal center antibody responses. Immunol Rev 247(1):64–72PubMedPubMedCentralGoogle Scholar
  59. 59.
    Mankan AK, Hornung V (2012) Retroviral danger from within: TLR7 is in control. Immunity 37(5):763–766PubMedGoogle Scholar
  60. 60.
    Hou B, Saudan P, Ott G, Wheeler ML, Ji M, Kuzmich L, Lee LM, Coffman RL, Bachmann MF, DeFranco AL (2011) Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. Immunity 34(3):375–384PubMedPubMedCentralGoogle Scholar
  61. 61.
    Lau CM, Broughton C, Tabor AS, Akira S, Flavell RA, Mamula MJ, Christensen SR, Shlomchik MJ, Viglianti GA, Rifkin IR, Marshak-Rothstein A (2005) RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med 202(9):1171–1177PubMedPubMedCentralGoogle Scholar
  62. 62.
    Hwang SH, Lee H, Yamamoto M, Jones LA, Dayalan J, Hopkins R, Zhou XJ, Yarovinsky F, Connolly JE, Curotto de Lafaille MA, Wakeland EK, Fairhurst AM (2012) B cell TLR7 expression drives anti-RNA autoantibody production and exacerbates disease in systemic lupus erythematosus-prone mice. J Immunol 189(12):5786–5796PubMedPubMedCentralGoogle Scholar
  63. 63.
    Pinheiro I, Dejager L, Libert C (2011) X-chromosome-located microRNAs in immunity: might they explain male/female differences? The X chromosome-genomic context may affect X-located miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. Bioessays 33(11):791–802PubMedGoogle Scholar
  64. 64.
    Scofield RH, Bruner GR, Namjou B, Kimberly RP, Ramsey-Goldman R, Petri M, Reveille JD, Alarcon GS, Vila LM, Reid J, Harris B, Li S, Kelly JA, Harley JB (2008) Klinefelter’s syndrome (47,XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. Arthritis Rheum 58(8):2511–2517PubMedPubMedCentralGoogle Scholar
  65. 65.
    Harris VM, Sharma R, Cavett J, Kurien BT, Liu K, Koelsch KA, Rasmussen A, Radfar L, Lewis D, Stone DU, Kaufman CE, Li S, Segal B, Wallace DJ, Weisman MH, Venuturupalli S, Kelly JA, Alarcon-Riquelme ME, Pons-Estel B, Jonsson R, Lu X, Gottenberg JE, Anaya JM, Cunninghame-Graham DS, Huang AJW, Brennan MT, Hughes P, Alevizos I, Miceli-Richard C, Keystone EC, Bykerk VP, Hirschfield G, Xie G, Ng WF, Nordmark G, Bucher SM, Eriksson P, Omdal R, Rhodus NL, Rischmueller M, Rohrer M, Wahren-Herlenius M, Witte T, Mariette X, Lessard CJ, Harley JB, Sivils KL, Scofield RH (2016) Klinefelter’s syndrome (47,XXY) is in excess among men with Sjögren’s syndrome. Clin. Immunol 168:25–29PubMedPubMedCentralGoogle Scholar
  66. 66.
    Seminog OO, Seminog AB, Yeates D, Goldacre MJ (2015) Associations between Klinefelter’s syndrome and autoimmune diseases: English national record linkage studies. Autoimmunity 48(2):125–128Google Scholar
  67. 67.
    Whitacre CC (2001) Sex differences in autoimmune disease. Nat Immunol 2(9):777–780Google Scholar
  68. 68.
    Liu K, Kurien BT, Zimmerman SL, Kaufman KM, Taft DH, Kottyan LC, Lazaro S, Weaver CA, Ice JA, Adler AJ, Chodosh J, Radfar L, Rasmussen A, Stone DU, Lewis DM, Li S, Koelsch KA, Igoe A, Talsania M, Kumar J, Maier-Moore JS, Harris VM, Gopalakrishnan R, Jonsson R, Lessard JA, Lu X, Gottenberg JE, Anaya JM, Cunninghame-Graham DS, Huang AJW, Brennan MT, Hughes P, Illei GG, Miceli-Richard C, Keystone EC, Bykerk VP, Hirschfield G, Xie G, Ng WF, Nordmark G, Eriksson P, Omdal R, Rhodus NL, Rischmueller M, Rohrer M, Segal BM, Vyse TJ, Wahren-Herlenius M, Witte T, Pons-Estel B, Alarcon-Riquelme ME, Guthridge JM, James JA, Lessard CJ, Kelly JA, Thompson SD, Gaffney PM, Montgomery CG, Edberg JC, Kimberly RP, Alarcon GS, Langefeld CL, Gilkeson GS, Kamen DL, Tsao BP, McCune WJ, Salmon JE, Merrill JT, Weisman MH, Wallace DJ, Utset TO, Bottinger EP, Amos CI, Siminovitch KA, Mariette X, Sivils KL, Harley JB, Scofield RH (2016) X chromosome dose and sex bias in autoimmune diseases: increased prevalence of 47,XXX in systemic lupus erythematosus and Sjogren’s syndrome. Arthritis Rheumatol 68(5):1290–1300PubMedPubMedCentralGoogle Scholar
  69. 69.
    Bai J, Qiao J, Wu Y, Zhao Z, Fang H (2015) Systemic lupus erythematosus in a patient with Turner syndrome. An Bras Dermatol 90(4):600–601PubMedPubMedCentralGoogle Scholar
  70. 70.
    Smith-Bouvier DL, Divekar AA, Sasidhar M, Du S, Tiwari-Woodruff SK, King JK, Arnold AP, Singh RR, Voskuhl RR (2008) A role for sex chromosome complement in the female bias in autoimmune disease. J Exp Med 205(5):1099–1108PubMedPubMedCentralGoogle Scholar
  71. 71.
    Arnold AP, Burgoyne PS (2004) Are XX and XY brain cells intrinsically different? Trends Endocrinol Metab 15(1):6–11PubMedGoogle Scholar
  72. 72.
    Sasidhar MV, Itoh N, Gold SM, Lawson GW, Voskuhl RR (2012) The XX sex chromosome complement in mice is associated with increased spontaneous lupus compared with XY. Ann Rheum Dis 71(8):1418–1422PubMedPubMedCentralGoogle Scholar
  73. 73.
    Teuscher C, Noubade R, Spach K, McElvany B, Bunn JY, Fillmore PD, Zachary JF, Blankenhorn EP (2006) Evidence that the Y chromosome influences autoimmune disease in male and female mice. Proc Natl Acad Sci U S A 103(21):8024–8029PubMedPubMedCentralGoogle Scholar
  74. 74.
    Spach KM, Blake M, Bunn JY, McElvany B, Noubade R, Blankenhorn EP, Teuscher C (2009) Cutting edge: the Y chromosome controls the age-dependent experimental allergic encephalomyelitis sexual dimorphism in SJL/J mice. J Immunol 182(4):1789–1793PubMedPubMedCentralGoogle Scholar
  75. 75.
    Case LK, Wall EH, Dragon JA, Saligrama N, Krementsov DN, Moussawi M, Zachary JF, Huber SA, Blankenhorn EP, Teuscher C (2013) The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease. Genome Res 23(9):1474–1485PubMedPubMedCentralGoogle Scholar
  76. 76.
    Charchar FJ, Bloomer LDS, Barnes TA, Cowley MJ, Nelson CP, Wang Y, Denniff M, Debiec R, Christofidou P, Nankervis S, Dominiczak AF, Bani-Mustafa A, Balmforth AJ, Hall AS, Erdmann J, Cambien F, Deloukas P, Hengstenberg C, Packard C, Schunkert H, Ouwehand WH, Ford I, Goodall AH, Jobling MA, Samani NJ, Tomaszewski M (2012) Inheritance of coronary artery disease in men: an analysis of the role of the Y chromosome. Lancet 379(9819):915–922PubMedPubMedCentralGoogle Scholar
  77. 77.
    Du S, Itoh N, Askarinam S, Hill H, Arnold AP, Voskuhl RR (2014) XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 111(7):2806–2811PubMedPubMedCentralGoogle Scholar
  78. 78.
    Laffont S, Rouquie N, Azar P, Seillet C, Plumas J, Aspord C, Guery JC (2014) X-Chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-alpha production of plasmacytoid dendritic cells from women. J Immunol 193(11):5444–5452PubMedGoogle Scholar
  79. 79.
    Berghofer B, Frommer T, Haley G, Fink L, Bein G, Hackstein H (2006) TLR7 ligands induce higher IFN-alpha production in females. J Immunol 177(4):2088–2096PubMedGoogle Scholar
  80. 80.
    Meier A, Chang JJ, Chan ES, Pollard RB, Sidhu HK, Kulkarni S, Wen TF, Lindsay RJ, Orellana L, Mildvan D, Bazner S, Streeck H, Alter G, Lifson JD, Carrington M, Bosch RJ, Robbins GK, Altfeld M (2009) Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat Med 15(8):955–959PubMedPubMedCentralGoogle Scholar
  81. 81.
    Seillet C, Laffont S, Tremollieres F, Rouquie N, Ribot C, Arnal JF, Douin-Echinard V, Gourdy P, Guery JC (2012) The TLR-mediated response of plasmacytoid dendritic cells is positively regulated by estradiol in vivo through cell-intrinsic estrogen receptor alpha signaling. Blood 119(2):454–464PubMedGoogle Scholar
  82. 82.
    Seillet C, Rouquie N, Foulon E, Douin-Echinard V, Krust A, Chambon P, Arnal JF, Guery JC, Laffont S (2013) Estradiol promotes functional responses in inflammatory and steady-state dendritic cells through differential requirement for activation function-1 of estrogen receptor alpha. J Immunol 190(11):5459–5470PubMedGoogle Scholar
  83. 83.
    Griesbeck M, Ziegler S, Laffont S, Smith N, Chauveau L, Tomezsko P, Sharei A, Kourjian G, Porichis F, Hart M, Palmer CD, Sirignano M, Beisel C, Hildebrandt H, Cenac C, Villani AC, Diefenbach TJ, Le Gall S, Schwartz O, Herbeuval JP, Autran B, Guery JC, Chang JJ, Altfeld M (2015) Sex differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFN-alpha production in women. J Immunol 195(11):5327–5336PubMedPubMedCentralGoogle Scholar
  84. 84.
    Fink AL, Klein SL (2018) The evolution of greater humoral immunity in females than males: implications for vaccine efficacy. Current Opinion in Physiology 6:16–20PubMedGoogle Scholar
  85. 85.
    Liu J, Xu C, Hsu LC, Luo Y, Xiang R, Chuang TH (2010) A five-amino-acid motif in the undefined region of the TLR8 ectodomain is required for species-specific ligand recognition. Mol Immunol 47(5):1083–1090PubMedGoogle Scholar
  86. 86.
    Forsbach A, Nemorin JG, Montino C, Muller C, Samulowitz U, Vicari AP, Jurk M, Mutwiri GK, Krieg AM, Lipford GB, Vollmer J (2008) Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J Immunol 180(6):3729–3738PubMedGoogle Scholar
  87. 87.
    Shimizu T (2017) Structural insights into ligand recognition and regulation of nucleic acid-sensing Toll-like receptors. Curr Opin Struct Biol 47:52–59PubMedGoogle Scholar
  88. 88.
    Tanji H, Ohto U, Shibata T, Taoka M, Yamauchi Y, Isobe T, Miyake K, Shimizu T (2015) Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat Struct Mol Biol 22(2):109–115PubMedGoogle Scholar
  89. 89.
    Zhang Z, Ohto U, Shibata T, Krayukhina E, Taoka M, Yamauchi Y, Tanji H, Isobe T, Uchiyama S, Miyake K, Shimizu T (2016) Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 45(4):737–748PubMedGoogle Scholar
  90. 90.
    Desnues B, Macedo AB, Roussel-Queval A, Bonnardel J, Henri S, Demaria O, Alexopoulou L (2014) TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proc Natl Acad Sci U S A 111(4):1497–1502PubMedPubMedCentralGoogle Scholar
  91. 91.
    Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of Toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168(9):4531–4537PubMedGoogle Scholar
  92. 92.
    Guiducci C, Gong M, Cepika AM, Xu Z, Tripodo C, Bennett L, Crain C, Quartier P, Cush JJ, Pascual V, Coffman RL, Barrat FJ (2013) RNA recognition by human TLR8 can lead to autoimmune inflammation. J Exp Med 210(13):2903–2919PubMedPubMedCentralGoogle Scholar
  93. 93.
    Kioon MDA, Tripodo C, Fernandez D, Kirou KA, Spiera RF, Crow MK, Gordon JK, Barrat FJ (2018) Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci Transl Med 10:423Google Scholar
  94. 94.
    Ugolini M, Gerhard J, Burkert S, Jensen KJ, Georg P, Ebner F, Volkers SM, Thada S, Dietert K, Bauer L, Schafer A, Helbig ET, Opitz B, Kurth F, Sur S, Dittrich N, Gaddam S, Conrad ML, Benn CS, Blohm U, Gruber AD, Hutloff A, Hartmann S, Boekschoten MV, Muller M, Jungersen G, Schumann RR, Suttorp N, Sander LE (2018) Recognition of microbial viability via TLR8 drives TFH cell differentiation and vaccine responses. Nat Immunol 19(4):386–396PubMedGoogle Scholar
  95. 95.
    Dowling DJ, van Haren SD, Scheid A, Bergelson I, Kim D, Mancuso CJ, Foppen W, Ozonoff A, Fresh L, Theriot TB, Lackner AA, Fichorova RN, Smirnov D, Vasilakos JP, Beaurline JM, Tomai MA, Midkiff CC, Alvarez X, Blanchard JL, Gilbert MH, Aye PP, Levy O (2017) TLR7/8 adjuvant overcomes newborn hyporesponsiveness to pneumococcal conjugate vaccine at birth. JCI Insight 2(6):e91020PubMedPubMedCentralGoogle Scholar
  96. 96.
    Dowling DJ, Scott EA, Scheid A, Bergelson I, Joshi S, Pietrasanta C, Brightman S, Sanchez-Schmitz G, Van Haren SD, Ninkovic J, Kats D, Guiducci C, de Titta A, Bonner DK, Hirosue S, Swartz MA, Hubbell JA, Levy O (2017) Toll-like receptor 8 agonist nanoparticles mimic immunomodulating effects of the live BCG vaccine and enhance neonatal innate and adaptive immune responses. J Allergy Clin Immunol 140(5):1339–1350PubMedPubMedCentralGoogle Scholar
  97. 97.
    Grimaldi CM, Cleary J, Dagtas AS, Moussai D, Diamond B (2002) Estrogen alters thresholds for B cell apoptosis and activation. J Clin Invest 109(12):1625–1633PubMedPubMedCentralGoogle Scholar
  98. 98.
    Hill L, Jeganathan V, Chinnasamy P, Grimaldi C, Diamond B (2011) Differential roles of estrogen receptors alpha and beta in control of B-cell maturation and selection. Mol Med 17(3–4):211–220PubMedGoogle Scholar
  99. 99.
    Pauklin S, Sernandez IV, Bachmann G, Ramiro AR, Petersen-Mahrt SK (2009) Estrogen directly activates AID transcription and function. J Exp Med 206(1):99–111PubMedPubMedCentralGoogle Scholar
  100. 100.
    Tabor DE, Gould KA (2017) Estrogen receptor alpha promotes lupus in (NZBxNZW)F1 mice in a B cell intrinsic manner. Clin Immunol 174:41–52PubMedGoogle Scholar
  101. 101.
    Panchanathan R, Liu H, Choubey D (2013) Expression of murine Unc93b1 is up-regulated by interferon and estrogen signaling: implications for sex bias in the development of autoimmunity. Int Immunol 25(9):521–529PubMedPubMedCentralGoogle Scholar
  102. 102.
    Tabeta K, Hoebe K, Janssen EM, Du X, Georgel P, Crozat K, Mudd S, Mann N, Sovath S, Goode J, Shamel L, Herskovits AA, Portnoy DA, Cooke M, Tarantino LM, Wiltshire T, Steinberg BE, Grinstein S, Beutler B (2006) The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol 7(2):156–164PubMedGoogle Scholar
  103. 103.
    Pelka K, Latz E (2013) IRF5, IRF8, and IRF7 in human pDCs—the good, the bad, and the insignificant? Eur J Immunol 43(7):1693–1697PubMedGoogle Scholar
  104. 104.
    Steinhagen F, McFarland AP, Rodriguez LG, Tewary P, Jarret A, Savan R, Klinman DM (2013) IRF-5 and NF-kappaB p50 co-regulate IFN-beta and IL-6 expression in TLR9-stimulated human plasmacytoid dendritic cells. Eur J Immunol 43(7):1896–1906PubMedGoogle Scholar
  105. 105.
    Tsokos GC, Lo MS, Reis PC, Sullivan KE (2016) New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 12:716–730PubMedGoogle Scholar
  106. 106.
    Cotton AM, Lam L, Affleck JG, Wilson IM, Peñaherrera MS, McFadden DE, Kobor MS, Lam WL, Robinson WP, Brown CJ (2011) Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation. Hum Genet 130(2):187–201PubMedPubMedCentralGoogle Scholar
  107. 107.
    Di Nunzio S, Cecconi M, Passerini L, McMurchy AN, Baron U, Turbachova I, Vignola S, Valencic E, Tommasini A, Junker A, Cazzola G, Olek S, Levings MK, Perroni L, Roncarolo MG, Bacchetta R (2009) Wild-type FOXP3 is selectively active in CD4+CD25(hi) regulatory T cells of healthy female carriers of different FOXP3 mutations. Blood 114(19):4138–4141PubMedGoogle Scholar
  108. 108.
    Deng Y, Zhao J, Sakurai D, Kaufman KM, Edberg JC, Kimberly RP, Kamen DL, Gilkeson GS, Jacob CO, Scofield RH, Langefeld CD, Kelly JA, Ramsey-Goldman R, Petri MA, Reveille JD, Vila LM, Alarcon GS, Vyse TJ, Pons-Estel BA, Freedman BI, Gaffney PM, Sivils KM, James JA, Gregersen PK, Anaya JM, Niewold TB, Merrill JT, Criswell LA, Stevens AM, Boackle SA, Cantor RM, Chen W, Grossman JM, Hahn BH, Harley JB, Alarcomicronn-Riquelme ME, Brown EE, Tsao BP (2013) MicroRNA-3148 modulates allelic expression of toll-like receptor 7 variant associated with systemic lupus erythematosus. PLoS Genet 9(2):e1003336PubMedPubMedCentralGoogle Scholar
  109. 109.
    Oh DY, Baumann K, Hamouda O, Eckert JK, Neumann K, Kucherer C, Bartmeyer B, Poggensee G, Oh N, Pruss A, Jessen H, Schumann RR (2009) A frequent functional toll-like receptor 7 polymorphism is associated with accelerated HIV-1 disease progression. Aids 23(3):297–307PubMedGoogle Scholar
  110. 110.
    Yang F, Babak T, Shendure J, Disteche CM (2010) Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res 20(5):614–622PubMedPubMedCentralGoogle Scholar
  111. 111.
    Pinter SF, Sadreyev RI, Yildirim E, Jeon Y, Ohsumi TK, Borowsky M, Lee JT (2012) Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations. Genome Res 22(10):1864–1876PubMedPubMedCentralGoogle Scholar
  112. 112.
    Deng X, Ma W, Ramani V, Hill A, Yang F, Ay F, Berletch JB, Blau CA, Shendure J, Duan Z, Noble WS, Disteche CM (2015) Bipartite structure of the inactive mouse X chromosome. Genome Biol 16:152PubMedPubMedCentralGoogle Scholar
  113. 113.
    van den Berg CH, Grady BP, Schinkel J, van de Laar T, Molenkamp R, van Houdt R, Coutinho RA, van Baarle D, Prins M (2011) Female sex and IL28B, a synergism for spontaneous viral clearance in hepatitis C virus (HCV) seroconverters from a community-based cohort. PLoS One 6(11):e27555PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, Université Paul SabatierToulouseFrance
  2. 2.Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris-DescartesParisFrance
  3. 3.INSERM UMR1043, Centre Hospitalier Universitaire PurpanToulouse Cedex 3France

Personalised recommendations