Advertisement

Seminars in Immunopathology

, Volume 40, Issue 6, pp 577–591 | Cite as

Macrophage-microbe interaction: lessons learned from the pathogen Mycobacterium tuberculosis

  • Somdeb BoseDasgupta
  • Jean Pieters
Review

Abstract

Macrophages, being the cornerstone of the immune system, have adapted the ancient nutrient acquisition mechanism of phagocytosis to engulf various infectious organisms thereby helping to orchestrate an appropriate host response. Phagocytosis refers to the process of internalization and degradation of particulate material, damaged and senescent cells and microorganisms by specialized cells, after which the vesicle containing the ingested particle, the phagosome, matures into acidic phagolysosomes upon fusion with hydrolytic enzyme-containing lysosomes. The destructive power of the macrophage is further exacerbated through the induction of macrophage activation upon a variety of inflammatory stimuli. Despite being the end-point for many phagocytosed microbes, the macrophage can also serve as an intracellular survival niche for a number of intracellular microorganisms. One microbe that is particularly successful at surviving within macrophages is the pathogen Mycobacterium tuberculosis, which can efficiently manipulate the macrophage at several levels, including modulation of the phagocytic pathway as well as interfering with a number of immune activation pathways that normally would lead to eradication of the internalized bacilli. M. tuberculosis excels at circumventing destruction within macrophages, thus establishing itself successfully for prolonged times within the macrophage. In this contribution, we describe a number of general features of macrophages in the context of their function to clear an infection, and highlight the strategies employed by M. tuberculosis to counter macrophage attack. Interestingly, research on the evasion tactics employed by M. tuberculosis within macrophages not only helps to design strategies to curb tuberculosis, but also allows a better understanding of host cell biology.

Keywords

Macrophages Pathogens Mycobacterium tuberculosis Inflammation 

Notes

Acknowledgements

We thank Rajesh Jayachandran and Liem Nguyen for the critical reading of the manuscript.

Funding information

Work in our laboratories is funded by the Swiss National Science Foundation, the Gebert Ruff Foundation, the Optimus Foundation, the Canton of Basel (to JP), the European Molecular Biology Organization (EMBO, through a Long Term Fellowship awarded to SBDG), and DST-SERB (YSS/2015/000471) and DBT (BT/RLF/Re-entry/33/2014) to SBDG.

References

  1. 1.
    Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17(1):593–623PubMedGoogle Scholar
  2. 2.
    Weiss G, Schaible UE (2015) Macrophage defense mechanisms against intracellular bacteria. Immunol Rev 264(1):182–203PubMedPubMedCentralGoogle Scholar
  3. 3.
    Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S, Edwards L, Gwyer E, Sedgwick JD, Barclay AN, Hussell T (2008) A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol 9(9):1074–1083PubMedGoogle Scholar
  4. 4.
    Wert SE, Yoshida M, LeVine AM, Ikegami M, Jones T, Ross GF, Fisher JH, Korfhagen TR, Whitsett JA (2000) Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc Natl Acad Sci U S A 97(11):5972–5977PubMedPubMedCentralGoogle Scholar
  5. 5.
    Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE (2013) Kupffer cells in the liver, comprehensive physiology, WileyGoogle Scholar
  6. 6.
    Klei TRL, Meinderts SM, van den Berg TK, van Bruggen R (2017) From the cradle to the grave: the role of macrophages in erythropoiesis and erythrophagocytosis. Front Immunol 8:73PubMedPubMedCentralGoogle Scholar
  7. 7.
    Ruggiero MG, Ferretti L, Glomski C, Pica A (2013) Erythrophagocytosis in circulating blood of loggerhead turtles Caretta caretta: the pitting of Heinz bodies. J Exp Zool A Ecol Genet Physiol 321(3):144–150PubMedGoogle Scholar
  8. 8.
    de Back DZ, Kostova EB, van Kraaij M, van den Berg TK, van Bruggen R (2014) Of macrophages and red blood cells; a complex love story. Front Physiol 5:9PubMedPubMedCentralGoogle Scholar
  9. 9.
    Manwani D, Bieker JJ (2008) Chapter 2 the erythroblastic island. Red cell development. Elsevier, pp 23–53Google Scholar
  10. 10.
    Bronte V, Pittet MJ (2013) The spleen in local and systemic regulation of immunity. Immunity 39(5):806–818PubMedPubMedCentralGoogle Scholar
  11. 11.
    Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2012) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229(2):176–185PubMedGoogle Scholar
  12. 12.
    Rabinovitch M (1995) Professional and non-professional phagocytes: an introduction. Trends Cell Biol 5(3):85–87PubMedGoogle Scholar
  13. 13.
    Dersch P (2002) Molecular and cellular mechanisms of bacterial entry into host cells, contributions to microbiology. KARGER, pp 183–209Google Scholar
  14. 14.
    Kaufmann SHE, Dorhoi A (2016) Molecular determinants in phagocyte-bacteria interactions. Immunity 44(3):476–491PubMedGoogle Scholar
  15. 15.
    Sarantis H, Grinstein S (2012) Subversion of phagocytosis for pathogen survival. Cell Host Microbe 12(4):419–431PubMedGoogle Scholar
  16. 16.
    Mitchell G, Chen C, Portnoy DA (2016) Strategies used by bacteria to grow in macrophages. Microbiol Spectr 4(3)MCHD-0012-2015Google Scholar
  17. 17.
    Woolard MD, Frelinger JA (2008) Outsmarting the host: bacteria modulating the immune response. Immunol Res 41(3):188–202PubMedGoogle Scholar
  18. 18.
    Andersson K, Carballeira N, Magnusson K-E, Persson C, Stendahl O, Wolf-Watz H, Fällman M (1996) YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis. Mol Microbiol 20(5):1057–1069PubMedGoogle Scholar
  19. 19.
    McGhie EJ, Brawn LC, Hume PJ, Humphreys D, Koronakis V (2009) Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol 12(1):117–124PubMedPubMedCentralGoogle Scholar
  20. 20.
    Kaniga K, Uralil J, Bliska JB, Galán JE (1996) A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurlum. Mol Microbiol 21(3):633–641PubMedGoogle Scholar
  21. 21.
    Fu Y, Galan JE (1999) A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401(6750):293–297PubMedGoogle Scholar
  22. 22.
    Johnson R, Byrne A, Berger CN, Klemm E, Crepin VF, Dougan G, Frankel G (2017) The type III secretion system effector SptP of Salmonella enterica Serovar Typhi. J Bacteriol 199(4)Google Scholar
  23. 23.
    Bakowski MA, Braun V, Lam GY, Yeung T, Do Heo W, Meyer T, Finlay BB, Grinstein S, Brumell JH (2010) The phosphoinositide phosphatase SopB manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole. Cell Host Microbe 7(6):453–462PubMedGoogle Scholar
  24. 24.
    Konradt C, Frigimelica E, Nothelfer K, Puhar A, Salgado-Pabon W, di Bartolo V, Scott-Algara D, Cristina D, Rodrigues PJ, Sansonetti AP (2011) The Shigella flexneri type three secretion system effector IpgD inhibits T cell migration by manipulating host phosphoinositide metabolism. Cell Host Microbe 9(4):263–272PubMedGoogle Scholar
  25. 25.
    Hsu F, Mao Y (2015) The structure of phosphoinositide phosphatases: insights into substrate specificity and catalysis. Biochim Biophys Acta Mol Cell Biol Lipids 1851(6):698–710Google Scholar
  26. 26.
    Ibarra JA, Steele-Mortimer O (2009) Salmonella- the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol 11(11):1579–1586PubMedPubMedCentralGoogle Scholar
  27. 27.
    Haraga A, West TE, Brittnacher MJ, Skerrett SJ, Miller SI (2008) Burkholderia thailandensis as a model system for the study of the virulence-associated type III secretion system of Burkholderia pseudomallei. Infect Immun 76(11):5402–5411PubMedPubMedCentralGoogle Scholar
  28. 28.
    Castro-Gomes T, Cardoso MS, DaRocha WD, Laibida LA, Nascimento AMA, Zuccherato LW, Horta MF, Bemquerer MP, Teixeira SMR (2014) Identification of secreted virulence factors of Chromobacterium violaceum. J Microbiol 52(4):350–353PubMedGoogle Scholar
  29. 29.
    Theriot JA (1995) The cell biology of infection by intracellular bacterial pathogens. Annu Rev Cell Dev Biol 11:213PubMedGoogle Scholar
  30. 30.
    Radoshevich L, Cossart P (2018) Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 16(1):32–46PubMedGoogle Scholar
  31. 31.
    Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, Chretien F, Heitman J, Dromer F, Nielsen K (2010) Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog 6(6):e1000953PubMedPubMedCentralGoogle Scholar
  32. 32.
    Zaragoza O, Garcia-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodriguez-Tudela JL, Casadevall A (2010) Fungal cell gigantism during mammalian infection. PLoS Pathog 6(6):e1000945PubMedPubMedCentralGoogle Scholar
  33. 33.
    Paulson T (2013) Epidemiology: a mortal foe. Nature 502(7470):S2–S3PubMedGoogle Scholar
  34. 34.
    Dorhoi A, Kaufmann SH (2016) Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis. Semin Immunopathol 38(2):153–166PubMedGoogle Scholar
  35. 35.
    Stutz MD, Clark MP, Doerflinger M, Pellegrini M (2017) Mycobacterium tuberculosis : rewiring host cell signaling to promote infection. J Leukoc Biol 103(2):259–268PubMedGoogle Scholar
  36. 36.
    Henderson HJ, Dannenberg AM Jr, Lurie MB (1963) Phagocytosis of tubercle bacilli by rabbit pulmonary alveolar macrophages and its relation to native resistance to tuberculosis. J Immunol (91):553–556Google Scholar
  37. 37.
    Teitelbaum R, Schubert W, Gunther L, Kress Y, Macaluso F, Pollard JW, McMurray DN, Bloom BR (1999) The M cell as a portal of entry to the lung for the bacterial pathogen Mycobacterium tuberculosis. Immunity 10(6):641–650PubMedGoogle Scholar
  38. 38.
    Cambier CJ, O’Leary SM, O’Sullivan MP, Keane J, Ramakrishnan L (2017) Phenolic glycolipid facilitates mycobacterial escape from microbicidal tissue-resident macrophages. Immunity 47(3):552–565PubMedPubMedCentralGoogle Scholar
  39. 39.
    BoseDasgupta S, Pieters J (2014) Striking the right balance determines TB or not TB. Front Immunol 5:455PubMedPubMedCentralGoogle Scholar
  40. 40.
    Pieters J (2008) Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe 3(6):399–407PubMedGoogle Scholar
  41. 41.
    Talaue MT, Venketaraman V, Hazbon MH, Peteroy-Kelly M, Seth A, Colangeli R, Alland D, Connell ND (2006) Arginine homeostasis in J774.1 macrophages in the context of Mycobacterium bovis BCG infection. J Bacteriol 188(13):4830–4840PubMedPubMedCentralGoogle Scholar
  42. 42.
    Das P, Lahiri A, Lahiri A, Chakravortty D (2010) Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS Pathog 6(6):e1000899PubMedPubMedCentralGoogle Scholar
  43. 43.
    Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A 97(16):8841–8848PubMedPubMedCentralGoogle Scholar
  44. 44.
    Reiling N, Blumenthal A, Flad HD, Ernst M, Ehlers S (2001) Mycobacteria-induced TNF- and IL-10 formation by human macrophages is differentially regulated at the level of mitogen-activated protein kinase activity. J Immunol 167(6):3339–3345PubMedGoogle Scholar
  45. 45.
    Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2(10):907–916PubMedGoogle Scholar
  46. 46.
    Peranzoni E, Marigo I, Dolcetti L, Ugel S, Sonda N, Taschin E, Mantelli B, Bronte V, Zanovello P (2007) Role of arginine metabolism in immunity and immunopathology. Immunobiology 212(9–10):795–812PubMedGoogle Scholar
  47. 47.
    McClean CM, Tobin DM (2016) Macrophage form, function, and phenotype in mycobacterial infection: lessons from tuberculosis and other diseases. Pathog Dis 74(7):ftw068PubMedPubMedCentralGoogle Scholar
  48. 48.
    Fratazzi C, Arbeit RD, Carini C, Balcewicz-Sablinska MK, Keane J, Kornfeld H, Remold HG (1999) Macrophage apoptosis in mycobacterial infections. J Leukoc Biol 66(5):763–764PubMedGoogle Scholar
  49. 49.
    van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M, Peters PJ (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129(7):1287–1298PubMedGoogle Scholar
  50. 50.
    Sundaramurthy V, Korf H, Singla A, Scherr N, Nguyen L, Ferrari G, Landmann R, Huygen K, Pieters J (2017) Survival of Mycobacterium tuberculosis and Mycobacterium bovis BCG in lysosomes in vivo. Microbes Infect 19(11):515–526PubMedGoogle Scholar
  51. 51.
    Levitte S, Adams KN, Berg RD, Cosma CL, Urdahl KB, Ramakrishnan L (2016) Mycobacterial acid tolerance enables phagolysosomal survival and establishment of tuberculous infection in vivo. Cell Host Microbe 20(2):250–258PubMedPubMedCentralGoogle Scholar
  52. 52.
    Kim M-J, Wainwright HC, Locketz M, Bekker L-G, Walther GB, Dittrich C, Visser A, Wang W, Hsu F-F, Wiehart U, Tsenova L, Kaplan G, Russell DG (2010) Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2(7):258–274PubMedPubMedCentralGoogle Scholar
  53. 53.
    Ramakrishnan L (2012) Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 12(5):352–366PubMedPubMedCentralGoogle Scholar
  54. 54.
    Russell DG, Cardona P-J, Kim M-J, Allain S, Altare F (2009) Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 10(9):943–948PubMedPubMedCentralGoogle Scholar
  55. 55.
    Ferguson JS, Weis JJ, Martin JL, Schlesinger LS (2004) Complement protein C3 binding to Mycobacterium tuberculosis is initiated by the classical pathway in human Bronchoalveolar lavage fluid. Infect Immun 72(5):2564–2573PubMedPubMedCentralGoogle Scholar
  56. 56.
    Kang PB, Azad AK, Torrelles JB, Kaufman TM, Beharka A, Tibesar E, DesJardin LE, Schlesinger LS (2005) The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med 202(7):987–999PubMedPubMedCentralGoogle Scholar
  57. 57.
    Pasula R, Downing JF, Wright JR, Kachel DL, Davis TE, Martin WJ (1997) Surfactant protein a (SP-A) mediates attachment of Mycobacterium tuberculosis to murine alveolar macrophages. Am J Respir Cell Mol Biol 17(2):209–217PubMedGoogle Scholar
  58. 58.
    Dunne DW, Resnick D, Greenberg J, Krieger M, Joiner KA (1994) The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci 91(5):1863–1867PubMedGoogle Scholar
  59. 59.
    Kumar SK, Singh P, Sinha S (2015) Naturally produced opsonizing antibodies restrict the survival of Mycobacterium tuberculosisin human macrophages by augmenting phagosome maturation. Open Biology 5(12):150171PubMedPubMedCentralGoogle Scholar
  60. 60.
    Casadevall A (2016) To be or not be a (functional) antibody against TB. Cell 167(2):306–307PubMedGoogle Scholar
  61. 61.
    Lu LL, Chung AW, Rosebrock TR, Ghebremichael M, Yu WH, Grace PS, Schoen MK, Tafesse F, Martin C, Leung V, Mahan AE, Sips M, Kumar MP, Tedesco J, Robinson H, Tkachenko E, Draghi M, Freedberg KJ, Streeck H, Suscovich TJ, Lauffenburger DA, Restrepo BI, Day C, Fortune SM, Alter G (2016) A functional role for antibodies in tuberculosis. Cell 167(2):433–443PubMedPubMedCentralGoogle Scholar
  62. 62.
    Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13PubMedGoogle Scholar
  63. 63.
    Ferrandon D, Imler J-L, Hoffmann JA (2004) Sensing infection in Drosophila: toll and beyond. Semin Immunol 16(1):43–53PubMedGoogle Scholar
  64. 64.
    Beutler B, Poltorak A (2001) Toll we meet again. Nat Immunol 2(1):9–10PubMedGoogle Scholar
  65. 65.
    Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7(2):131–137PubMedGoogle Scholar
  66. 66.
    Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M, Amara A, Legres L, Dreher D, Nicod LP, Gluckman JC, Lagrange PH, Gicquel B, Neyrolles O (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197(1):121–127PubMedPubMedCentralGoogle Scholar
  67. 67.
    Geijtenbeek TB, Van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM, Appelmelk B, Van Kooyk Y (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197(1):7–17PubMedPubMedCentralGoogle Scholar
  68. 68.
    Shams H, Wizel B, Lakey DL, Samten B, Vankayalapati R, Valdivia RH, Kitchens RL, Griffith DE, Barnes PF (2003) The CD14 receptor does not mediate entry of Mycobacterium tuberculosis into human mononuclear phagocytes. FEMS Immunology & Medical Microbiology 36(1–2):63–69Google Scholar
  69. 69.
    Guirado E, Schlesinger LS, Kaplan G (2013) Macrophages in tuberculosis: friend or foe. Semin Immunopathol 35(5):563–583PubMedPubMedCentralGoogle Scholar
  70. 70.
    Yamashiro LH, Oliveira SC, Báfica A (2014) Innate immune sensing of nucleic acids from mycobacteria. Microbes Infect 16(12):991–997PubMedGoogle Scholar
  71. 71.
    Yadav M, Schorey JS (2006) The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108(9):3168–3175PubMedPubMedCentralGoogle Scholar
  72. 72.
    Armstrong JA, Hart PD (1971) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134(3 Pt 1):713–740PubMedPubMedCentralGoogle Scholar
  73. 73.
    Russell DG (2001) Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2(8):569–577PubMedGoogle Scholar
  74. 74.
    Nguyen L, Pieters J (2009) Mycobacterial subversion of chemotherapeutic reagents and host defense tactics: challenges in tuberculosis drug development. Annu Rev Pharmacol Toxicol 49:427–453PubMedGoogle Scholar
  75. 75.
    Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678–681PubMedGoogle Scholar
  76. 76.
    Warner DF, Mizrahi V (2007) The survival kit of Mycobacterium tuberculosis. Nat Med 13(3):282–284PubMedGoogle Scholar
  77. 77.
    Ferrari G, Langen H, Naito M, Pieters J (1999) A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97(4):435–447PubMedGoogle Scholar
  78. 78.
    Gatfield J, Pieters J (2000) Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288(5471):1647–1651PubMedGoogle Scholar
  79. 79.
    Jayachandran R, Sundaramurthy V, Combaluzier B, Mueller P, Korf H, Huygen K, Miyazaki T, Albrecht I, Massner J, Pieters J (2007) Survival of mycobacteria in macrophages is mediated by Coronin 1-dependent activation of calcineurin. Cell 130(1):37–50PubMedGoogle Scholar
  80. 80.
    Pieters J, Müller P, Jayachandran R (2013) On guard: coronin proteins in innate and adaptive immunity. Nat Rev Immunol 13(7):510–518PubMedGoogle Scholar
  81. 81.
    BoseDasgupta S, Pieters J (2014) Coronin 1 trimerization is essential to protect pathogenic mycobacteria within macrophages from lysosomal delivery. FEBS Lett 588(21):3898–3905PubMedGoogle Scholar
  82. 82.
    Kumar D, Nath L, Kamal MA, Varshney A, Jain A, Singh S, Rao KVS (2010) Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell 140(5):731–743PubMedGoogle Scholar
  83. 83.
    Mueller P, Massner J, Jayachandran R, Combaluzier B, Albrecht I, Gatfield J, Blum C, Ceredig R, Rodewald H-R, Rolink AG, Pieters J (2008) Regulation of T cell survival through coronin-1–mediated generation of inositol-1,4,5-trisphosphate and calcium mobilization after T cell receptor triggering. Nat Immunol 9(4):424–431PubMedGoogle Scholar
  84. 84.
    Shiow LR, Roadcap DW, Paris K, Watson SR, Grigorova IL, Lebet T, An J, Xu Y, Jenne CN, Föger N, Sorensen RU, Goodnow CC, Bear JE, Puck JM, Cyster JG (2008) The actin regulator coronin 1A is mutant in a thymic egress–deficient mouse strain and in a patient with severe combined immunodeficiency. Nat Immunol 9(11):1307–1315PubMedPubMedCentralGoogle Scholar
  85. 85.
    Haraldsson MK, Louis-Dit-Sully CA, Lawson BR, Sternik G, Santiago-Raber ML, Gascoigne NR, Theofilopoulos AN, Kono DH (2008) The lupus-related Lmb3 locus contains a disease-suppressing Coronin-1A gene mutation. Immunity 28(1):40–51PubMedPubMedCentralGoogle Scholar
  86. 86.
    Lang MJ, Mori M, Ruer-Laventie J, Pieters J (2017) A Coronin 1–dependent decision switch in juvenile mice determines the population of the peripheral naive T cell compartment. J Immunol 199(7):2421–2431PubMedGoogle Scholar
  87. 87.
    Jayachandran R, Gatfield J, Massner J, Albrecht I, Zanolari B, Pieters J (2008) RNA interference in J774 macrophages reveals a role for Coronin 1 in mycobacterial trafficking but not in actin-dependent processes. Mol Biol Cell 19(3):1241–1251PubMedPubMedCentralGoogle Scholar
  88. 88.
    BoseDasgupta S, Pieters J (2014) Inflammatory stimuli reprogram macrophage phagocytosis to macropinocytosis for the rapid elimination of pathogens. PLoS Pathog 10(1):e1003879PubMedPubMedCentralGoogle Scholar
  89. 89.
    Jeschke A, Haas A (2016) Deciphering the roles of phosphoinositide lipids in phagolysosome biogenesis. Communicative & integrative biology 9(3):e1174798Google Scholar
  90. 90.
    Bohdanowicz M, Grinstein S (2013) Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis. Physiol Rev 93(1):69–106PubMedGoogle Scholar
  91. 91.
    Vieira OV, Harrison RE, Scott CC, Stenmark H, Alexander D, Liu J, Gruenberg J, Schreiber AD, Grinstein S (2004) Acquisition of Hrs, an essential component of phagosomal maturation is impaired by mycobacteria. Mol Cell Biol 24(10):4593–4604PubMedPubMedCentralGoogle Scholar
  92. 92.
    Fratti RA, Backer JM, Gruenberg J, Corvera S, Deretic V (2001) Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 154(3):631–644PubMedPubMedCentralGoogle Scholar
  93. 93.
    Dickson EJ, Jensen JB, Hille B (2016) Regulation of calcium and phosphoinositides at endoplasmic reticulum–membrane junctions. Biochem Soc Trans 44(2):467–473PubMedPubMedCentralGoogle Scholar
  94. 94.
    Burman C, Ktistakis NT (2010) Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett 584(7):1302–1312PubMedGoogle Scholar
  95. 95.
    Fairn GD, Grinstein S (2012) How nascent phagosomes mature to become phagolysosomes. Trends Immunol 33(8):397–405PubMedGoogle Scholar
  96. 96.
    Marat AL, Haucke V (2016) Phosphatidylinositol 3-phosphates—at the interface between cell signalling and membrane traffic. EMBO J 35(6):561–579PubMedPubMedCentralGoogle Scholar
  97. 97.
    Indrigo J, Hunter RL Jr, Actor JK (2003) Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology 149(Pt 8):2049–2059PubMedGoogle Scholar
  98. 98.
    Axelrod S, Oschkinat H, Enders J, Schlegel B, Brinkmann V, Kaufmann SHE, Haas A, Schaible UE (2008) Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cell Microbiol 10(7):1530–1545PubMedGoogle Scholar
  99. 99.
    Fratti RA et al (2003) Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci U S A 100:5437PubMedPubMedCentralGoogle Scholar
  100. 100.
    Vergne I, Chua J, Deretic V (2003) Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J Exp Med 198(4):653–659PubMedPubMedCentralGoogle Scholar
  101. 101.
    Puri RV, Reddy PV, Tyagi AK (2013) Secreted acid phosphatase (SapM) of Mycobacterium tuberculosis is indispensable for arresting phagosomal maturation and growth of the pathogen in Guinea pig tissues. PLoS One 8(7):e70514PubMedPubMedCentralGoogle Scholar
  102. 102.
    Walburger A, Koul A, Ferrari G, Nguyen L, Prescianotto-Baschong C, Huygen K, Klebl B, Thompson C, Bacher G, Pieters J (2004) Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304(5678):1800–1804PubMedGoogle Scholar
  103. 103.
    Cowley S, Ko M, Pick N, Chow R, Downing KJ, Gordhan BG, Betts JC, Mizrahi V, Smith DA, Stokes RW, Av-Gay Y (2004) The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol Microbiol 52(6):1691–1702PubMedGoogle Scholar
  104. 104.
    Houben EN, Walburger A, Ferrari G, Nguyen L, Thompson CJ, Miess C, Vogel G, Mueller B, Pieters J (2009) Differential expression of a virulence factor in pathogenic and non-pathogenic mycobacteria. Mol Microbiol 72(1):41–52PubMedPubMedCentralGoogle Scholar
  105. 105.
    van der Woude AD, Stoop EJ, Stiess M, Wang S, Ummels R, van Stempvoort G, Piersma SR, Cascioferro A, Jimenez CR, Houben EN, Luirink J, Pieters J, van der Sar AM, Bitter W (2014) Analysis of SecA2-dependent substrates in Mycobacterium marinum identifies protein kinase G (PknG) as a virulence effector. Cell Microbiol 16(2):280–295PubMedGoogle Scholar
  106. 106.
    Zulauf KE, Sullivan JT, Braunstein M (2018) The SecA2 pathway of Mycobacterium tuberculosis exports effectors that work in concert to arrest phagosome and autophagosome maturation. PLoS Pathog 14(4):e1007011PubMedPubMedCentralGoogle Scholar
  107. 107.
    Wolff KA, de la Pena AH, Nguyen HT, Pham TH, Amzel LM, Gabelli SB, Nguyen L (2015) A redox regulatory system critical for mycobacterial survival in macrophages and biofilm development. PLoS Pathog 11(4):e1004839PubMedPubMedCentralGoogle Scholar
  108. 108.
    Wolff KA, Nguyen HT, Cartabuke RH, Singh A, Ogwang S, Nguyen L (2009) Protein kinase G is required for intrinsic antibiotic resistance in mycobacteria. Antimicrob Agents Chemother 53(8):3515–3519PubMedPubMedCentralGoogle Scholar
  109. 109.
    Mueller P, Pieters J (2017) Identification of mycobacterial GarA as a substrate of protein kinase G from M. tuberculosis using a KESTREL-based proteome wide approach. J Microbiol Methods 136:34–39PubMedGoogle Scholar
  110. 110.
    O'Hare HM, Duran R, Cervenansky C, Bellinzoni M, Wehenkel AM, Pritsch O, Obal G, Baumgartner J, Vialaret J, Johnsson K, Alzari PM (2008) Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol Microbiol 70(6):1408–1423PubMedGoogle Scholar
  111. 111.
    Rieck B, Degiacomi G, Zimmermann M, Cascioferro A, Boldrin F, Lazar-Adler NR, Bottrill AR, le Chevalier F, Frigui W, Bellinzoni M, Lisa MN, Alzari PM, Nguyen L, Brosch R, Sauer U, Manganelli R, O'Hare HM (2017) PknG senses amino acid availability to control metabolism and virulence of Mycobacterium tuberculosis. PLoS Pathog 13(5):e1006399PubMedPubMedCentralGoogle Scholar
  112. 112.
    Mottola G (2014) The complexity of Rab5 to Rab7 transition guarantees specificity of pathogen subversion mechanisms. Front Cell Infect Microbiol 4:180PubMedPubMedCentralGoogle Scholar
  113. 113.
    Wang J, Ge P, Qiang L, Tian F, Zhao D, Chai Q, Zhu M, Zhou R, Meng G, Iwakura Y, Gao GF, Liu CH (2017) The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation. Nat Commun 8(1):244PubMedPubMedCentralGoogle Scholar
  114. 114.
    Desvignes L, Wolf AJ, Ernst JD (2012) Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis. J Immunol 188(12):6205–6215PubMedPubMedCentralGoogle Scholar
  115. 115.
    Jouanguy E, Lamhamedi-Cherradi S, Altare F, Fondanèche MC, Tuerlinckx D, Blanche S, Emile JF, Gaillard JL, Schreiber R, Levin M, Fischer A, Hivroz C, Casanova JL (1997) Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guérin infection and a sibling with clinical tuberculosis. J Clin Investig 100(11):2658–2664PubMedGoogle Scholar
  116. 116.
    Okada S, Markle JG, Deenick EK, Mele F, Averbuch D, Lagos M, Alzahrani M, Al-Muhsen S, Halwani R, Ma CS, Wong N, Soudais C, Henderson LA, Marzouqa H, Shamma J, Gonzalez M, Martinez-Barricarte R, Okada C, Avery DT, Latorre D, Deswarte C, Jabot-Hanin F, Torrado E, Fountain J, Belkadi A, Itan Y, Boisson B, Migaud M, Arlehamn CSL, Sette A, Breton S, McCluskey J, Rossjohn J, de Villartay JP, Moshous D, Hambleton S, Latour S, Arkwright PD, Picard C, Lantz O, Engelhard D, Kobayashi M, Abel L, Cooper AM, Notarangelo LD, Boisson-Dupuis S, Puel A, Sallusto F, Bustamante J, Tangye SG, Casanova JL (2015) Immunodeficiencies. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349(6248):606–613PubMedPubMedCentralGoogle Scholar
  117. 117.
    Lewinsohn DA, Lewinsohn DM, Scriba TJ (2017) Polyfunctional CD4+ T cells as targets for tuberculosis vaccination. Front Immunol 8:1262PubMedPubMedCentralGoogle Scholar
  118. 118.
    Ehrt S, Schnappinger D, Bekiranov S, Drenkow J, Shi S, Gingeras TR, Gaasterland T, Schoolnik G, Nathan C (2001) Reprogramming of the macrophage transcriptome in response to interferon-gamma and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J Exp Med 194(8):1123–1140PubMedPubMedCentralGoogle Scholar
  119. 119.
    Feng CG, Collazo-Custodio CM, Eckhaus M, Hieny S, Belkaid Y, Elkins K, Jankovic D, Taylor GA, Sher A (2004) Mice deficient in LRG-47 display increased susceptibility to mycobacterial infection associated with the induction of lymphopenia. J Immunol 172(2):1163–1168PubMedGoogle Scholar
  120. 120.
    Tiwari S, Choi H-P, Matsuzawa T, Pypaert M, MacMicking JD (2009) Targeting of the GTPase Irgm1 to the phagosomal membrane via PtdIns(3,4)P2 and PtdIns(3,4,5)P3 promotes immunity to mycobacteria. Nat Immunol 10(8):907–917PubMedPubMedCentralGoogle Scholar
  121. 121.
    Duncan SA, Baganizi DR, Sahu R, Singh SR, Dennis VA (2017) SOCS proteins as regulators of inflammatory responses induced by bacterial infections: a review. Front Microbiol 8:2431PubMedPubMedCentralGoogle Scholar
  122. 122.
    Queval CJ, Song O-R, Carralot J-P, Saliou J-M, Bongiovanni A, Deloison G, Deboosère N, Jouny S, Iantomasi R, Delorme V, Debrie A-S, Park S-J, Gouveia JC, Tomavo S, Brosch R, Yoshimura A, Yeramian E, Brodin P (2017) Mycobacterium tuberculosis controls phagosomal acidification by targeting CISH-mediated signaling. Cell Rep 20(13):3188–3198PubMedPubMedCentralGoogle Scholar
  123. 123.
    Mancuso G, Midiri A, Biondo C, Beninati C, Zummo S, Galbo R, Tomasello F, Gambuzza M, Macri G, Ruggeri A, Leanderson T, Teti G (2007) Type I IFN signaling is crucial for host resistance against different species of pathogenic bacteria. J Immunol 178(5):3126–3133PubMedGoogle Scholar
  124. 124.
    Donovan ML, Schultz TE, Duke TJ, Blumenthal A (2017) Type I interferons in the pathogenesis of tuberculosis: molecular drivers and immunological consequences. Front Immunol 8:1633PubMedPubMedCentralGoogle Scholar
  125. 125.
    Pestka S, Krause CD, Walter MR (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202(1):8–32PubMedGoogle Scholar
  126. 126.
    Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. Proc R Soc B Biol Sci 147(927):258–267Google Scholar
  127. 127.
    Stanley SA, Johndrow JE, Manzanillo P, Cox JS (2007) The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol 178(5):3143–3152PubMedGoogle Scholar
  128. 128.
    Jang A-R, Choi J-H, Shin SJ, Park J-H (2018) Mycobacterium tuberculosis ESAT6 induces IFN-β gene expression in macrophages via TLRs-mediated signaling. Cytokine 104:104–109PubMedGoogle Scholar
  129. 129.
    Pandey AK, Yang Y, Jiang Z, Fortune SM, Coulombe F, Behr MA, Fitzgerald KA, Sassetti CM, Kelliher MA (2009) NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog 5(7):e1000500PubMedPubMedCentralGoogle Scholar
  130. 130.
    Ruangkiattikul N, Nerlich A, Abdissa K, Lienenklaus S, Suwandi A, Janze N, Laarmann K, Spanier J, Kalinke U, Weiss S, Goethe R (2017) cGAS-STING-TBK1-IRF3/7 induced interferon-β contributes to the clearing of non tuberculous mycobacterial infection in mice. Virulence 8(7):1303–1315PubMedPubMedCentralGoogle Scholar
  131. 131.
    Wiens KE, Ernst JD (2016) The mechanism for type I interferon induction by Mycobacterium tuberculosis is bacterial strain-dependent. PLoS Pathog 12(8):e1005809PubMedPubMedCentralGoogle Scholar
  132. 132.
    Kopitar-Jerala N (2017) The role of interferons in inflammation and inflammasome activation. Front Immunol 8:873PubMedPubMedCentralGoogle Scholar
  133. 133.
    Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491PubMedPubMedCentralGoogle Scholar
  134. 134.
    Moreira-Teixeira L, Mayer-Barber K, Sher A, O'Garra A (2018) Type I interferons in tuberculosis: foe and occasionally friend. J Exp Med 215(5):1273–1285PubMedGoogle Scholar
  135. 135.
    Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, Klunker S, Meyer N, O’Mahony L, Palomares O, Rhyner C, Quaked N, Schaffartzik A, Van De Veen W, Zeller S, Zimmermann M, Akdis CA (2011) Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol 127(3):701–721.e70PubMedGoogle Scholar
  136. 136.
    Saunders BM, Frank AA, Orme IM, Cooper AM (2000) Interleukin-6 induces early gamma interferon production in the infected lung but is not required for generation of specific immunity to Mycobacterium tuberculosis infection. Infect Immun 68(6):3322–3326PubMedPubMedCentralGoogle Scholar
  137. 137.
    Martinez AN, Mehra S, Kaushal D (2013) Role of interleukin 6 in innate immunity to Mycobacterium tuberculosis infection. J Infect Dis 207(8):1253–1261PubMedPubMedCentralGoogle Scholar
  138. 138.
    Dinarello CA (2018) Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev 281(1):8–27PubMedPubMedCentralGoogle Scholar
  139. 139.
    Domingo-Gonzalez R, Prince O, Cooper A, Khader SA (2016) Cytokines and chemokines in Mycobacterium tuberculosis infection. Microbiol Spectrum 4(5)Google Scholar
  140. 140.
    de Jong R, Altare F, Haagen IA, Elferink DG, Boer T, van Breda Vriesman PJ, Kabel PJ, Draaisma JM, van Dissel JT, Kroon FP, Casanova JL, Ottenhoff TH (1998) Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280(5368):1435–1438PubMedGoogle Scholar
  141. 141.
    Jouanguy E, Döffinger R, Dupuis S, Pallier A, Altare F, Casanova J-L (1999) IL-12 and IFN-γ in host defense against mycobacteria and salmonella in mice and men. Curr Opin Immunol 11(3):346–351PubMedGoogle Scholar
  142. 142.
    Cooper AM, Roberts AD, Rhoades ER, Callahan JE, Getzy DM, Orme IM (1995) The role of interleukin-12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology 84(3):423–432PubMedPubMedCentralGoogle Scholar
  143. 143.
    Cooper A, Khader SA (2008) The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol Rev 226:191PubMedPubMedCentralGoogle Scholar
  144. 144.
    Ehlers S, Schaible UE (2013) The granuloma in tuberculosis: dynamics of a host–pathogen collusion. Front Immunol 3:411PubMedPubMedCentralGoogle Scholar
  145. 145.
    Raphael I, Nalawade S, Eagar TN, Forsthuber TG (2015) T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74(1):5–17PubMedGoogle Scholar
  146. 146.
    Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M, Deretic V (2007) T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27(3):505–517PubMedGoogle Scholar
  147. 147.
    Dahl KE, Shiratsuchi H, Hamilton BD, Ellner JJ, Toossi Z (1996) Selective induction of transforming growth factor beta in human monocytes by lipoarabinomannan of Mycobacterium tuberculosis. Infect Immun 64(2):399–405PubMedPubMedCentralGoogle Scholar
  148. 148.
    Jeong YH, Hur Y-G, Lee H, Kim S, Cho J-E, Chang J, Shin SJ, Lee H, Kang YA, Cho S-N, Ha S-J (2014) Discrimination between active and latent tuberculosis based on ratio of antigen-specific to mitogen-induced IP-10 production. J Clin Microbiol 53(2):504–510PubMedGoogle Scholar
  149. 149.
    O'Leary S, O'Sullivan MP, Keane J (2011) IL-10 blocks phagosome maturation in mycobacterium tuberculosis-infected human macrophages. Am J Respir Cell Mol Biol 45(1):172–180PubMedGoogle Scholar
  150. 150.
    Harding CV, Boom WH (2010) Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol 8(4):296–307PubMedPubMedCentralGoogle Scholar
  151. 151.
    Darwin KH, Ehrt S, Gutierrez-Ramos JC, Weich N, Nathan CF (2003) The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302(5652):1963–1966PubMedGoogle Scholar
  152. 152.
    Pieters J, Ploegh H (2003) Microbiology. Chemical warfare and mycobacterial defense. Science 302(5652):1900–1902PubMedGoogle Scholar
  153. 153.
    Pearce MJ, Mintseris J, Ferreyra J, Gygi SP, Darwin KH (2008) Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322(5904):1104–1107PubMedPubMedCentralGoogle Scholar
  154. 154.
    Jastrab JB, Darwin KH (2015) Bacterial Proteasomes. Annu Rev Microbiol 69:109–127PubMedPubMedCentralGoogle Scholar
  155. 155.
    Striebel F, Imkamp F, Özcelik D, Weber-Ban E (2014) Pupylation as a signal for proteasomal degradation in bacteria. Biochim Biophys Acta Mol Cell Res 1843(1):103–113Google Scholar
  156. 156.
    Samanovic MI, Tu S, Novak O, Iyer LM, McAllister FE, Aravind L, Gygi SP, Hubbard SR, Strnad M, Darwin KH (2015) Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide. Mol Cell 57(6):984–994PubMedPubMedCentralGoogle Scholar
  157. 157.
    Shi X, Festa RA, Ioerger TR, Butler-Wu S, Sacchettini JC, Darwin KH, Samanovic MI (2014) The copper-responsive RicR regulon contributes to Mycobacterium tuberculosis virulence. mBio 5(1)Google Scholar
  158. 158.
    Becker SH, Darwin KH (2017) Bacterial proteasomes: mechanistic and functional insights. Microbiol Mol Biol Rev 81(1)Google Scholar
  159. 159.
    BoseDasgupta S, Moes S, Jenoe P, Pieters J (2015) Cytokine-induced macropinocytosis in macrophages is regulated by 14-3-3ζ through its interaction with serine-phosphorylated coronin 1. FEBS J 282(7):1167–1181PubMedGoogle Scholar
  160. 160.
    Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-γ. Annu Rev Immunol 15(1):749–795PubMedGoogle Scholar
  161. 161.
    Kim B-H, Shenoy AR, Kumar P, Bradfield CJ, MacMicking JD (2012) IFN-Inducible GTPases in host cell defense. Cell Host Microbe 12(4):432–444PubMedPubMedCentralGoogle Scholar
  162. 162.
    Springer HM, Schramm M, Taylor GA, Howard JC (2013) Irgm1 (LRG-47), a regulator of cell-autonomous immunity, does not localize to mycobacterial or listerial phagosomes in IFN- -induced mouse cells. J Immunol 191(4):1765–1774PubMedPubMedCentralGoogle Scholar
  163. 163.
    Astarie-Dequeker C, Le Guyader L, Malaga W, Seaphanh F-K, Chalut C, Lopez A, Guilhot C (2009) Phthiocerol Dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathogens 5(2):e1000289PubMedPubMedCentralGoogle Scholar
  164. 164.
    Casanova JL, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20:581–620PubMedGoogle Scholar
  165. 165.
    Bustamante J, Arias AA, Vogt G, Picard C, Galicia LB, Prando C, Grant AV, Marchal CC, Hubeau M, Chapgier A, de Beaucoudrey L, Puel A, Feinberg J, Valinetz E, Janniere L, Besse C, Boland A, Brisseau JM, Blanche S, Lortholary O, Fieschi C, Emile JF, Boisson-Dupuis S, Al-Muhsen S, Woda B, Newburger PE, Condino-Neto A, Dinauer MC, Abel L, Casanova JL, Germline CYBB (2011) Mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol 12(3):213–221PubMedPubMedCentralGoogle Scholar
  166. 166.
    Mattila JT, Ojo OO, Kepka-Lenhart D, Marino S, Kim JH, Eum SY, Via LE, Barry CE 3rd, Klein E, Kirschner DE, Morris SM Jr, Lin PL, Flynn JL (2013) Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol 191(2):773–784PubMedPubMedCentralGoogle Scholar
  167. 167.
    Marakalala MJ, Martinez FO, Pluddemann A, Gordon S (2018) Macrophage heterogeneity in the immunopathogenesis of tuberculosis. Front Microbiol 9:1028PubMedPubMedCentralGoogle Scholar
  168. 168.
    Flynn JL, Chan J, Lin PL (2011) Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol 4(3):271–278PubMedPubMedCentralGoogle Scholar
  169. 169.
    Kaufmann SHE (2001) How can immunology contribute to the control of tuberculosis? Nat Rev Immunol 1(1):20–30PubMedPubMedCentralGoogle Scholar
  170. 170.
    Ramachandra L, Chu RS, Askew D, Noss EH, Canaday DH, Potter NS, Johnsen A, Krieg AM, Nedrud JG, Boom WH, Harding CV (1999) Phagocytic antigen processing and effects of microbial products on antigen processing and T-cell responses. Immunol Rev 168(1):217–239PubMedGoogle Scholar
  171. 171.
    Pieters J (2001) Evasion of host cell defense mechanisms by pathogenic bacteria. Curr Opin Immunol 13(1):37–44PubMedGoogle Scholar
  172. 172.
    Espinosa-Cueto P, Magallanes-Puebla A, Castellanos C, Mancilla R (2017) Dendritic cells that phagocytose apoptotic macrophages loaded with mycobacterial antigens activate CD8 T cells via cross-presentation. PLoS One 12(8):e0182126PubMedPubMedCentralGoogle Scholar
  173. 173.
    Harriff MJ, Purdy GE, Lewinsohn DM (2012) Escape from the phagosome: the explanation for MHC-I processing of mycobacterial antigens? Front Immunol 3:40PubMedPubMedCentralGoogle Scholar
  174. 174.
    Nunes-Alves C, Booty MG, Carpenter SM, Jayaraman P, Rothchild AC, Behar SM (2014) In search of a new paradigm for protective immunity to TB. Nat Rev Microbiol 12(4):289–299PubMedPubMedCentralGoogle Scholar
  175. 175.
    Silva CL, Lowrie DB (2000) Identification and characterization of murine cytotoxic T cells that kill Mycobacterium tuberculosis. Infect Immun 68(6):3269–3274PubMedPubMedCentralGoogle Scholar
  176. 176.
    Vyas JM, Van der Veen AG, Ploegh HL (2008) The known unknowns of antigen processing and presentation, nature reviews. Immunology 8(8):607–618PubMedGoogle Scholar
  177. 177.
    Blum JS, Wearsch PA, Cresswell P (2013) Pathways of antigen processing. Annu Rev Immunol 31:443–473PubMedPubMedCentralGoogle Scholar
  178. 178.
    Noss EH, Pai RK, Sellati TJ, Radolf JD, Belisle J, Golenbock DT, Boom WH, Harding CV (2001) Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis. J Immunol 167(2):910–918PubMedGoogle Scholar
  179. 179.
    Garg A, Barnes PF, Roy S, Quiroga MF, Wu S, Garcia VE, Krutzik SR, Weis SE, Vankayalapati R (2008) Mannose-capped lipoarabinomannan- and prostaglandin E2-dependent expansion of regulatory T cells in human Mycobacterium tuberculosis infection. Eur J Immunol 38(2):459–469PubMedPubMedCentralGoogle Scholar
  180. 180.
    Holla S, Stephen-Victor E, Prakhar P, Sharma M, Saha C, Udupa V, Kaveri SV, Bayry J, Balaji KN (2016) Mycobacteria-responsive sonic hedgehog signaling mediates programmed death-ligand 1- and prostaglandin E2-induced regulatory T cell expansion. Sci Rep 6(1)Google Scholar
  181. 181.
    Cohen NR, Garg S, Brenner MB (2009) Antigen presentation by CD1 lipids, T cells, and NKT cells in microbial immunity. Adv Immunol 102:1–94PubMedGoogle Scholar
  182. 182.
    Van Rhijn I, Moody DB (2015) CD1 and mycobacterial lipids activate human T cells. Immunol Rev 264(1):138–153PubMedPubMedCentralGoogle Scholar
  183. 183.
    Gagliardi MC, Teloni R, Giannoni F, Mariotti S, Remoli ME, Sargentini V, Videtta M, Pardini M, De Libero G, Coccia EM, Nisini R (2009) Mycobacteria exploit p38 signaling to affect CD1 expression and lipid antigen presentation by human dendritic cells. Infect Immun 77(11):4947–4952PubMedPubMedCentralGoogle Scholar
  184. 184.
    Gold MC, Napier RJ, Lewinsohn DM (2015) MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis. Immunol Rev 264(1):154–166PubMedPubMedCentralGoogle Scholar
  185. 185.
    Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O'Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491(7426):717–723PubMedGoogle Scholar
  186. 186.
    Mori L, Lepore M, De Libero G (2016) The immunology of CD1- and MR1-restricted T cells. Annu Rev Immunol 34:479–510PubMedGoogle Scholar
  187. 187.
    Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Barrell BG et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544PubMedGoogle Scholar
  188. 188.
    McDonough KA, Kress Y, Bloom BR (1993) Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages [published erratum appears in iInfect Immun 1993 Sep;61(9):4021-4]. Infect Immun 61(7):2763–2773PubMedPubMedCentralGoogle Scholar
  189. 189.
    Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L, Brosch R, Enninga J (2012) Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog 8(2):e1002507PubMedPubMedCentralGoogle Scholar
  190. 190.
    Simeone R, Sayes F, Song O, Gröschel MI, Brodin P, Brosch R, Majlessi L (2015) Cytosolic access of Mycobacterium tuberculosis: critical impact of phagosomal acidification control and demonstration of occurrence in vivo. PLoS Pathog 11(2):e1004650PubMedPubMedCentralGoogle Scholar
  191. 191.
    Houben D, Demangel C, van Ingen J, Perez J, Baldeón L, Abdallah AM, Caleechurn L, Bottai D, van Zon M, de Punder K, van der Laan T, Kant A, Bossers-de Vries R, Willemsen P, Bitter W, van Soolingen D, Brosch R, van der Wel N, Peters PJ (2012) ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol 14(8):1287–1298PubMedGoogle Scholar
  192. 192.
    Houben ENG, Bestebroer J, Ummels R, Wilson L, Piersma SR, Jiménez CR, Ottenhoff THM, Luirink J, Bitter W (2012) Composition of the type VII secretion system membrane complex. Mol Microbiol 86(2):472–484PubMedGoogle Scholar
  193. 193.
    Kinhikar AG, Verma I, Chandra D, Singh KK, Weldingh K, Andersen P, Hsu T, Jacobs WR Jr, Laal S (2010) Potential role for ESAT6 in dissemination of M. tuberculosis via human lung epithelial cells. Mol Microbiol 75(1):92–106PubMedGoogle Scholar
  194. 194.
    Lou Y, Rybniker J, Sala C, Cole ST (2016) EspC forms a filamentous structure in the cell envelope of Mycobacterium tuberculosis and impacts ESX-1 secretion. Mol Microbiol 103(1):26–38PubMedGoogle Scholar
  195. 195.
    Demangel C, Brodin P, Cockle PJ, Brosch R, Majlessi L, Leclerc C, Cole ST (2004) Cell envelope protein PPE68 contributes to Mycobacterium tuberculosis RD1 immunogenicity independently of a 10-Kilodalton culture filtrate protein and ESAT-6. Infect Immun 72(4):2170–2176PubMedPubMedCentralGoogle Scholar
  196. 196.
    Manzanillo PS, Ayres JS, Watson RO, Collins AC, Souza G, Rae CS, Schneider DS, Nakamura K, Shiloh MU, Cox JS (2013) The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501(7468):512–516PubMedPubMedCentralGoogle Scholar
  197. 197.
    Watson RO, Manzanillo PS, Cox JS (2012) Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150(4):803–815PubMedPubMedCentralGoogle Scholar
  198. 198.
    Vance RE, Isberg RR, Portnoy DA (2009) Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6(1):10–21PubMedPubMedCentralGoogle Scholar
  199. 199.
    Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119(6):753–766PubMedGoogle Scholar
  200. 200.
    Delgado MA, Deretic V (2009) Toll-like receptors in control of immunological autophagy. Cell Death Differ 16(7):976–983PubMedPubMedCentralGoogle Scholar
  201. 201.
    Liu PT, Stenger S, Tang DH, Modlin RL (2007) Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 179(4):2060–2063PubMedGoogle Scholar
  202. 202.
    Shin D-M, Yuk J-M, Lee H-M, Lee S-H, Son JW, Harding CV, Kim J-M, Modlin RL, Jo E-K (2010) Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell Microbiol 12(11):1648–1665PubMedPubMedCentralGoogle Scholar
  203. 203.
    Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS (2012) Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11(5):469–480PubMedPubMedCentralGoogle Scholar
  204. 204.
    Schmeisser H, Fey SB, Horowitz J, Fischer ER, Balinsky CA, Miyake K, Bekisz J, Snow AL, Zoon KC (2013) Type I interferons induce autophagy in certain human cancer cell lines. Autophagy 9(5):683–696PubMedPubMedCentralGoogle Scholar
  205. 205.
    Romagnoli A, Etna MP, Giacomini E, Pardini M, Remoli ME, Corazzari M, Falasca L, Goletti D, Gafa V, Simeone R, Delogu G, Piacentini M, Brosch R, Fimia GM, Coccia EM (2012) ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy 8(9):1357–1370PubMedPubMedCentralGoogle Scholar
  206. 206.
    Moraco AH, Kornfeld H (2014) Cell death and autophagy in tuberculosis. Semin Immunol 26(6):497–511PubMedPubMedCentralGoogle Scholar
  207. 207.
    Lammas DA, Stober C, Harvey CJ, Kendrick N, Panchalingam S, Kumararatne DS (1997) ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors. Immunity 7(3):433–444PubMedGoogle Scholar
  208. 208.
    Amaral EP, Lasunskaia EB, D'Império-Lima MR (2016) Innate immunity in tuberculosis: how the sensing of mycobacteria and tissue damage modulates macrophage death. Microbes Infect 18(1):11–20PubMedGoogle Scholar
  209. 209.
    Petit-Jentreau L, Tailleux L, Coombes JL (2017) Purinergic signaling: a common path in the macrophage response against Mycobacterium tuberculosis and toxoplasma gondii. Front Cell Infect Microbiol 7:347PubMedPubMedCentralGoogle Scholar
  210. 210.
    Parandhaman DK, Narayanan S (2014) Cell death paradigms in the pathogenesis of Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 4:31PubMedPubMedCentralGoogle Scholar
  211. 211.
    Velmurugan K, Chen B, Miller JL, Azogue S, Gurses S, Hsu T, Glickman M, Jacobs WR Jr, Porcelli SA, Briken V (2007) Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog 3(7):e110PubMedPubMedCentralGoogle Scholar
  212. 212.
    Hinchey J, Lee S, Jeon BY, Basaraba RJ, Venkataswamy MM, Chen B, Chan J, Braunstein M, Orme IM, Derrick SC, Morris SL, Jacobs WR Jr, Porcelli SA (2007) Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J Clin Invest 117(8):2279–2288PubMedPubMedCentralGoogle Scholar
  213. 213.
    Briken V, Miller JL (2008) Living on the edge: inhibition of host cell apoptosis by Mycobacterium tuberculosis. Future Microbiol 3(4):415–422PubMedPubMedCentralGoogle Scholar
  214. 214.
    Miller JL, Velmurugan K, Cowan MJ, Briken V (2010) The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-alpha-mediated host cell apoptosis. PLoS Pathog 6(4):e1000864PubMedPubMedCentralGoogle Scholar
  215. 215.
    Srinivasan L, Gurses SA, Hurley BE, Miller JL, Karakousis PC, Briken V (2016) Identification of a transcription factor that regulates host cell exit and virulence of Mycobacterium tuberculosis. PLoS Pathog 12(5):e1005652PubMedPubMedCentralGoogle Scholar
  216. 216.
    Chen M, Gan H, Remold HG (2006) A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J Immunol 176(6):3707–3716PubMedGoogle Scholar
  217. 217.
    Divangahi M, Chen M, Gan H, Desjardins D, Hickman TT, Lee DM, Fortune S, Behar SM, Remold HG (2009) Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol 10(8):899–906PubMedPubMedCentralGoogle Scholar
  218. 218.
    Miller JL, Velmurugan K, Cowan MJ, Briken V (2010) The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-α-mediated host cell apoptosis. PLoS Pathog 6(4):e1000864PubMedPubMedCentralGoogle Scholar
  219. 219.
    Gengenbacher M, Kaufmann SHE (2012) Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 36(3):514–532PubMedPubMedCentralGoogle Scholar
  220. 220.
    Doddam SN, Peddireddy V, Ahmed N (2017) Mycobacterium tuberculosis DosR regulon gene Rv2004c encodes a novel antigen with pro-inflammatory functions and potential diagnostic application for detection of latent tuberculosis. Front Immunol 8:712PubMedPubMedCentralGoogle Scholar
  221. 221.
    Chen Z, Hu Y, Cumming BM, Lu P, Feng L, Deng J, Steyn AJC, Chen S (2016) Mycobacterial WhiB6 differentially regulates ESX-1 and the dos regulon to modulate granuloma formation and virulence in zebrafish. Cell Rep 16(9):2512–2524PubMedGoogle Scholar
  222. 222.
    Sivaramakrishnan S, Ortiz de Montellano P (2013) The DosS-DosT/DosR Mycobacterial sensor system. Biosensors 3(3):259–282PubMedPubMedCentralGoogle Scholar
  223. 223.
    Hu Y, Movahedzadeh F, Stoker NG, Coates ARM (2006) Deletion of the Mycobacterium tuberculosis -crystallin-like hspX gene causes increased bacterial growth in vivo. Infect Immun 74(2):861–868PubMedPubMedCentralGoogle Scholar
  224. 224.
    Kumar A, Deshane JS, Crossman DK, Bolisetty S, Yan B-S, Kramnik I, Agarwal A, Steyn AJC (2008) Heme Oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J Biol Chem 283(26):18032–18039PubMedPubMedCentralGoogle Scholar
  225. 225.
    Vandal OH, Pierini LM, Schnappinger D, Nathan CF, Ehrt S (2008) A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat Med 14(8):849–854PubMedPubMedCentralGoogle Scholar
  226. 226.
    Botella H, Vaubourgeix J, Lee MH, Song N, Xu W, Makinoshima H, Glickman MS, Ehrt S (2017) Mycobacterium tuberculosis protease MarP activates a peptidoglycan hydrolase during acid stress. EMBO J 36(4):536–548PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of Biochemistry, BiozentrumUniversity of BaselBaselSwitzerland

Personalised recommendations