Advertisement

Seminars in Immunopathology

, Volume 40, Issue 6, pp 593–603 | Cite as

Acute and chronic phagocyte determinants of cardiac allograft vasculopathy

  • Kristofor Glinton
  • Matthew DeBerge
  • Xin-Yi Yeap
  • Jenny Zhang
  • Joseph Forbess
  • Xunrong Luo
  • Edward B. ThorpEmail author
Review

Abstract

Post-transplant immunosuppression has reduced the incidence of T cell-mediated acute rejection, yet long-term cardiac graft survival rates remain a challenge. An important determinant of chronic solid organ allograft complication is accelerated vascular disease of the transplanted graft. In the case of cardiac allograft vasculopathy (CAV), the precise cellular etiology remains inadequately understood; however, histologic evidence hints at the accumulation and activation of innate phagocytes as a causal contributing factor. This includes monocytes, macrophages, and immature dendritic cell subsets. In addition to crosstalk with adaptive T and B immune cells, myeloid phagocytes secrete paracrine signals that directly activate fibroblasts and vascular smooth muscle cells, both of which contribute to fibrous intimal thickening. Though maladaptive phagocyte functions may promote CAV, directed modulation of myeloid cell function, at the molecular level, holds promise for tolerance and prolonged cardiac graft function.

Keywords

Transplant Vasculopathy Macrophage Tolerance 

Notes

Funding information

This review was supported by NHLBI R01HL122309 to ET, R01HL139812-01 to XL, and ET, and an AHA post-doctoral award to KG.

References

  1. 1.
    Alegre ML, Bartman C, Chong AS (2014) Microbes and allogeneic transplantation. Transplantation 97(1):5–11PubMedGoogle Scholar
  2. 2.
    Arandjelovic S, Ravichandran KS (2015) Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 16(9):907–917PubMedPubMedCentralGoogle Scholar
  3. 3.
    Atif SM, Nelsen MK, Gibbings SL, Desch AN, Kedl RM, Gill RG, Marrack P, Murphy KM, Grazia TJ, Henson PM, Jakubzick CV (2015) Cutting edge: roles for Batf3-dependent APCs in the rejection of minor histocompatibility antigen-mismatched grafts. J Immunol 195(1):46–50PubMedPubMedCentralGoogle Scholar
  4. 4.
    Atkinson C, Floerchinger B, Qiao F, Casey S, Williamson T, Moseley E, Stoica S, Goddard M, Ge X, Tullius SG, Tomlinson S (2013) Donor brain death exacerbates complement-dependent ischemia/reperfusion injury in transplanted hearts. Circulation 127(12):1290–1299PubMedPubMedCentralGoogle Scholar
  5. 5.
    Autieri MV, Kelemen S, Thomas BA, Feller ED, Goldman BI, Eisen HJ (2002) Allograft inflammatory factor-1 expression correlates with cardiac rejection and development of cardiac allograft vasculopathy. Circulation 106(17):2218–2223PubMedGoogle Scholar
  6. 6.
    Azad TD, Donato M, Heylen L, Liu AB, Shen-Orr SS, Sweeney TE, Maltzman JS, Naesens M, Khatri P (2018) Inflammatory macrophage-associated 3-gene signature predicts subclinical allograft injury and graft survival. JCI Insight 3(2):e95659.PubMedCentralGoogle Scholar
  7. 7.
    Bronte V, Apolloni E, Cabrelle A, Ronca R, Serafini P, Zamboni P, Restifo NP, Zanovello P (2000) Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood 96(12):3838–3846PubMedPubMedCentralGoogle Scholar
  8. 8.
    Cai Q, Lanting L, Natarajan R (2004) Interaction of monocytes with vascular smooth muscle cells regulates monocyte survival and differentiation through distinct pathways. Arterioscler Thromb Vasc Biol 24(12):2263–2270PubMedGoogle Scholar
  9. 9.
    Cerutti A, Puga I, Cols M (2011) Innate control of B cell responses. Trends Immunol 32(5):202–211PubMedPubMedCentralGoogle Scholar
  10. 10.
    Chih S, Chong AY, Mielniczuk LM, Bhatt DL, Beanlands RS (2016) Allograft vasculopathy: the Achilles’ heel of heart transplantation. J Am Coll Cardiol 68(1):80–91Google Scholar
  11. 11.
    Chong AS, Khiew SH (2017) Transplantation tolerance: don’t forget about the B cells. Clin Exp Immunol 189(2):171–180PubMedPubMedCentralGoogle Scholar
  12. 12.
    Christen T, Nahrendorf M, Wildgruber M, Swirski FK, Aikawa E, Waterman P, Shimizu K, Weissleder R, Libby P (2009) Molecular imaging of innate immune cell function in transplant rejection. Circulation 119(14):1925–1932PubMedPubMedCentralGoogle Scholar
  13. 13.
    Clemmensen TS, Holm NR, Eiskjaer H, Logstrup BB, Christiansen EH, Dijkstra J, Barkholt TO, Terkelsen CJ, Maeng M, Poulsen SH (2017) Layered fibrotic plaques are the predominant component in cardiac allograft vasculopathy: systematic findings and risk stratification by OCT. JACC Cardiovasc Imaging 10(7):773–784Google Scholar
  14. 14.
    Colvin RB, Smith RN (2005) Antibody-mediated organ-allograft rejection. Nat Rev Immunol 5(10):807–817PubMedGoogle Scholar
  15. 15.
    Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, Brahmachary M, Chen HM, Boros P, Rausell-Palamos F, Yun TJ, Riquelme P, Rastrojo A, Aguado B, Stein-Streilein J, Tanaka M, Zhou L, Zhang J, Lowary TL, Ginhoux F, Park CG, Cheong C, Brody J, Turley SJ, Lira SA, Bronte V, Gordon S, Heeger PS, Merad M, Hutchinson J, Chen SH, Ochando J (2015) DC-SIGN(+) macrophages control the induction of transplantation tolerance. Immunity 42(6):1143–1158PubMedPubMedCentralGoogle Scholar
  16. 16.
    D’Alessio S, Correale C, Tacconi C, Gandelli A, Pietrogrande G, Vetrano S, Genua M, Arena V, Spinelli A, Peyrin-Biroulet L, Fiocchi C, Danese S (2014) VEGF-C–dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease. J Clin Invest 124(9):3863–3878PubMedPubMedCentralGoogle Scholar
  17. 17.
    Dai H, Friday AJ, Abou-Daya KI, Williams AL, Mortin-Toth S, Nicotra ML, Rothstein DM, Shlomchik WD, Matozaki T, Isenberg JS, Oberbarnscheidt MH, Danska JS, Lakkis FG (2017) Donor SIRPalpha polymorphism modulates the innate immune response to allogeneic grafts. Sci Immunol 2(12):eaam6202PubMedPubMedCentralGoogle Scholar
  18. 18.
    Dugast AS, Haudebourg T, Coulon F, Heslan M, Haspot F, Poirier N, Vuillefroy de Silly R, Usal C, Smit H, Martinet B, Thebault P, Renaudin K, Vanhove B (2008) Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J Immunol 180(12):7898–7906PubMedGoogle Scholar
  19. 19.
    Egawa M, Mukai K, Yoshikawa S, Iki M, Mukaida N, Kawano Y, Minegishi Y, Karasuyama H (2013) Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophil-derived interleukin-4. Immunity 38(3):570–580PubMedGoogle Scholar
  20. 20.
    El-Sawy T, Belperio JA, Strieter RM, Remick DG, Fairchild RL (2005) Inhibition of polymorphonuclear leukocyte-mediated graft damage synergizes with short-term costimulatory blockade to prevent cardiac allograft rejection. Circulation 112(3):320–331PubMedGoogle Scholar
  21. 21.
    Estorch M, Camprecios M, Flotats A, Mari C, Berna L, Catafau AM, Ballester M, Narula J, Carrio I (1999) Sympathetic reinnervation of cardiac allografts evaluated by 123I-MIBG imaging. J Nucl Med 40(6):911–916PubMedGoogle Scholar
  22. 22.
    Galis ZS, Sukhova GK, Kranzhofer R, Clark S, Libby P (1995) Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci U S A 92(2):402–406PubMedPubMedCentralGoogle Scholar
  23. 23.
    Garcia MR, Ledgerwood L, Yang Y, Xu J, Lal G, Burrell B, Ma G, Hashimoto D, Li Y, Boros P, Grisotto M, van Rooijen N, Matesanz R, Tacke F, Ginhoux F, Ding Y, Chen SH, Randolph G, Merad M, Bromberg JS, Ochando JC (2010) Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. J Clin Invest 120(7):2486–2496PubMedPubMedCentralGoogle Scholar
  24. 24.
    Gramley F, Lorenzen J, Pezzella F, Kettering K, Himmrich E, Plumhans C, Koellensperger E, Munzel T (2009) Hypoxia and myocardial remodeling in human cardiac allografts: a time-course study. J Heart Lung Transplant 28(11):1119–1126PubMedGoogle Scholar
  25. 25.
    Grupper A, Gewirtz H, Kushwaha S (2018) Reinnervation post-heart transplantation. Eur Heart J 39(20):1799–1806PubMedGoogle Scholar
  26. 26.
    Hall KL, Volk-Draper LD, Flister MJ, Ran S (2012) New model of macrophage acquisition of the lymphatic endothelial phenotype. PLoS One 7(3):e31794PubMedPubMedCentralGoogle Scholar
  27. 27.
    Henri O, Pouehe C, Houssari M, Galas L, Nicol L, Edwards-Lévy F, Henry J-P, Dumesnil A, Boukhalfa I, Banquet S, Schapman D, Thuillez C, Richard V, Mulder P, Brakenhielm E (2016) “<span hwp:id="article-title-1″ class="article-title">Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction</span><span hwp:id="article-title-58" class="sub-article-title">CLINICAL PERSPECTIVE</span>”. Circulation 133: 1484–1497Google Scholar
  28. 28.
    Henson PM, Bratton DL (2013) Antiinflammatory effects of apoptotic cells. J Clin Invest 123(7):2773–2774PubMedPubMedCentralGoogle Scholar
  29. 29.
    Hsiao EC, Yoshinaga Y, Nguyen TD, Musone SL, Kim JE, Swinton P, Espineda I, Manalac C, deJong PJ, Conklin BR (2008) Marking embryonic stem cells with a 2A self-cleaving peptide: a NKX2-5 emerald GFP BAC reporter. PLoS One 3(7):e2532PubMedPubMedCentralGoogle Scholar
  30. 30.
    Huang SC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, Pearce EJ (2016) Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45(4):817–830PubMedPubMedCentralGoogle Scholar
  31. 31.
    Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ, Abraham RT (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22(20):7004–7014PubMedPubMedCentralGoogle Scholar
  32. 32.
    Ide K, Wang H, Tahara H, Liu J, Wang X, Asahara T, Sykes M, Yang YG, Ohdan H (2007) Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages. Proc Natl Acad Sci U S A 104(12):5062–5066PubMedPubMedCentralGoogle Scholar
  33. 33.
    Imtiyaz HZ, Williams EP, Hickey MM, Patel SA, Durham AC, Yuan LJ, Hammond R, Gimotty PA, Keith B, Simon MC (2010) Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation. J Clin Invest 120(8):2699–2714PubMedPubMedCentralGoogle Scholar
  34. 34.
    Isenberg JS, Pappan LK, Romeo MJ, Abu-Asab M, Tsokos M, Wink DA, Frazier WA, Roberts DD (2008) Blockade of thrombospondin-1-CD47 interactions prevents necrosis of full thickness skin grafts. Ann Surg 247(1):180–190PubMedPubMedCentralGoogle Scholar
  35. 35.
    Jiang X, Khan MA, Tian W, Beilke J, Natarajan R, Kosek J, Yoder MC, Semenza GL, Nicolls MR (2011) Adenovirus-mediated HIF-1alpha gene transfer promotes repair of mouse airway allograft microvasculature and attenuates chronic rejection. J Clin Invest 121(6):2336–2349PubMedPubMedCentralGoogle Scholar
  36. 36.
    Keranen MA, Nykanen AI, Krebs R, Pajusola K, Tuuminen R, Alitalo K, Lemstrom KB (2010) Cardiomyocyte-targeted HIF-1alpha gene therapy inhibits cardiomyocyte apoptosis and cardiac allograft vasculopathy in the rat. J Heart Lung Transplant 29(9):1058–1066PubMedGoogle Scholar
  37. 37.
    Keranen MA, Nykanen AI, Krebs R, Tuuminen R, Sandelin H, Koskinen PK, Lemstrom KB (2006) Effect of graft preservation and acute rejection on hypoxia-inducible factor-1 in rat cardiac allografts. Transplant Proc 38(10):3372–3373PubMedGoogle Scholar
  38. 38.
    Keranen MA, Tuuminen R, Syrjala S, Krebs R, Walkinshaw G, Flippin LA, Arend M, Koskinen PK, Nykanen AI, Lemstrom KB (2013) Differential effects of pharmacological HIF preconditioning of donors versus recipients in rat cardiac allografts. Am J Transplant 13(3):600–610PubMedGoogle Scholar
  39. 39.
    Kitchens WH, Chase CM, Uehara S, Cornell LD, Colvin RB, Russell PS, Madsen JC (2007) Macrophage depletion suppresses cardiac allograft vasculopathy in mice. Am J Transplant 7(12):2675–2682PubMedGoogle Scholar
  40. 40.
    Klotz L, Norman S, Vieira JM, Masters M, Rohling M, Dubé KN, Bollini S, Matsuzaki F, Carr CA, Riley PR (2015) Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522:62–67PubMedPubMedCentralGoogle Scholar
  41. 41.
    Larson SR, Atif SM, Gibbings SL, Thomas SM, Prabagar MG, Danhorn T, Leach SM, Henson PM, Jakubzick CV (2016) Ly6C(+) monocyte efferocytosis and cross-presentation of cell-associated antigens. Cell Death Differ 23(6):997–1003PubMedPubMedCentralGoogle Scholar
  42. 42.
    Lechler RI, Sykes M, Thomson AW, Turka LA (2005) Organ transplantation—how much of the promise has been realized? Nat Med 11(6):605–613PubMedGoogle Scholar
  43. 43.
    Lee CF, Lo YC, Cheng CH, Furtmuller GJ, Oh B, Andrade-Oliveira V, Thomas AG, Bowman CE, Slusher BS, Wolfgang MJ, Brandacher G, Powell JD (2015) Preventing allograft rejection by targeting immune metabolism. Cell Rep 13(4):760–770PubMedPubMedCentralGoogle Scholar
  44. 44.
    Lemstrom KB, Koskinen PK (1997) Expression and localization of platelet-derived growth factor ligand and receptor protein during acute and chronic rejection of rat cardiac allografts. Circulation 96(4):1240–1249PubMedGoogle Scholar
  45. 45.
    Leslie M (2018) Putting immune cells on a diet. Science 359(6383):1454–1456PubMedGoogle Scholar
  46. 46.
    Levy BD, Zhang QY, Bonnans C, Primo V, Reilly JJ, Perkins DL, Liang Y, Amin Arnaout M, Nikolic B, Serhan CN (2011) The endogenous pro-resolving mediators lipoxin A4 and resolvin E1 preserve organ function in allograft rejection. Prostaglandins Leukot Essent Fatty Acids 84(1–2):43–50PubMedGoogle Scholar
  47. 47.
    Li W, Hsiao HM, Higashikubo R, Saunders BT, Bharat A, Goldstein DR, Krupnick AS, Gelman AE, Lavine KJ, Kreisel D (2016) Heart-resident CCR2(+) macrophages promote neutrophil extravasation through TLR9/MyD88/CXCL5 signaling. JCI Insight 1(12):e87315.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Liu W, Xiao X, Demirci G, Madsen J, Li XC (2012) Innate NK cells and macrophages recognize and reject allogeneic nonself in vivo via different mechanisms. J Immunol 188:2703–2711PubMedPubMedCentralGoogle Scholar
  49. 49.
    Liu YV, Hubbi ME, Pan F, McDonald KR, Mansharamani M, Cole RN, Liu JO, Semenza GL (2007) Calcineurin promotes hypoxia-inducible factor 1alpha expression by dephosphorylating RACK1 and blocking RACK1 dimerization. J Biol Chem 282(51):37064–37073PubMedPubMedCentralGoogle Scholar
  50. 50.
    Luo X, Pothoven KL, McCarthy D, DeGutes M, Martin A, Getts DR, Xia G, He J, Zhang X, Kaufman DB, Miller SD (2008) ECDI-fixed allogeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms. Proc Natl Acad Sci U S A 105(38):14527–14532PubMedPubMedCentralGoogle Scholar
  51. 51.
    Mancini MC, Evans JT (2000) Role of platelet-derived growth factor in allograft vasculopathy. Ann Surg 231(5):682–688PubMedPubMedCentralGoogle Scholar
  52. 52.
    McCarthy DP, Bryant J, Galvin JP, Miller SD, Luo X (2015) Tempering allorecognition to induce transplant tolerance with chemically modified apoptotic donor cells. Am J Transplant 15(6):1475–1483PubMedPubMedCentralGoogle Scholar
  53. 53.
    McIntosh CM, Chen L, Shaiber A, Eren AM, Alegre ML (2018) Gut microbes contribute to variation in solid organ transplant outcomes in mice. Microbiome 6(1):96PubMedPubMedCentralGoogle Scholar
  54. 54.
    Mevorach D, Zuckerman T, Reiner I, Shimoni A, Samuel S, Nagler A, Rowe JM, Or R (2014) Single infusion of donor mononuclear early apoptotic cells as prophylaxis for graft-versus-host disease in myeloablative HLA-matched allogeneic bone marrow transplantation: a phase I/IIa clinical trial. Biol Blood Marrow Transplant 20(1):58–65PubMedGoogle Scholar
  55. 55.
    Mitchell RN, Libby P (2007) Vascular remodeling in transplant vasculopathy. Circ Res 100(7):967–978PubMedGoogle Scholar
  56. 56.
    Morelli AE, Larregina AT (2016) "Concise review: mechanisms behind apoptotic cell-based therapies against transplant rejection and graft versus host disease. Stem Cells 34(5): 1142–1150.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Mues B, Brisse B, Steinhoff G, Lynn T, Hewett T, Sorg C, Zuhdi N, Robbins G (1991) Diagnostic assessment of macrophage phenotypes in cardiac transplant biopsies. Eur Heart J 12(Suppl D):32–35PubMedGoogle Scholar
  58. 58.
    N AG, Bensinger SJ, Hong C, Beceiro S, Bradley MN, Zelcer N, Deniz J, Ramirez C, Diaz M, Gallardo G, de Galarreta CR, Salazar J, Lopez F, Edwards P, Parks J, Andujar M, Tontonoz P, Castrillo A (2009) Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31(2):245–258Google Scholar
  59. 59.
    Nagji AS, Hranjec T, Swenson BR, Kern JA, Bergin JD, Jones DR, Kron IL, Lau CL, Ailawadi G (2010) Donor age is associated with chronic allograft vasculopathy after adult heart transplantation: implications for donor allocation. Ann Thorac Surg 90(1):168–175PubMedPubMedCentralGoogle Scholar
  60. 60.
    Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140(6):871–882PubMedGoogle Scholar
  61. 61.
    Oberbarnscheidt MH, Zeng Q, Li Q, Dai H, Williams AL, Shlomchik WD, Rothstein DM, Lakkis FG (2014) Non-self recognition by monocytes initiates allograft rejection. J Clin Invest 124(8):3579–3589PubMedPubMedCentralGoogle Scholar
  62. 62.
    Ochando JC, Homma C, Yang Y, Hidalgo A, Garin A, Tacke F, Angeli V, Li Y, Boros P, Ding Y, Jessberger R, Trinchieri G, Lira SA, Randolph GJ, Bromberg JS (2006) Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat Immunol 7(6):652–662PubMedGoogle Scholar
  63. 63.
    Oda T, Ishimura T, Yokoyama N, Ogawa S, Miyake H, Fujisaw M (2017) Hypoxia-inducible factor-1alpha expression in kidney transplant biopsy specimens after reperfusion is associated with early recovery of graft function after cadaveric kidney transplantation. Transplant Proc 49(1):68–72PubMedGoogle Scholar
  64. 64.
    Perry JSA, Russler-Germain EV, Zhou YW, Purtha W, Cooper ML, Choi J, Schroeder MA, Salazar V, Egawa T, Lee B-C, Abumrad NA, Kim BS, Anderson MS, DiPersio JF, Hsieh C-S (2018) CD36 mediates cell-surface antigens to promote thymic development of the regulatory t cell receptor repertoire and allo-tolerance. Immunity 48(5):923–936.e924PubMedGoogle Scholar
  65. 65.
    Petrakopoulou P, Kubrich M, Pehlivanli S, Meiser B, Reichart B, von Scheidt W, Weis M (2004) Cytomegalovirus infection in heart transplant recipients is associated with impaired endothelial function. Circulation 110(11 Suppl 1):Ii207–Ii212PubMedGoogle Scholar
  66. 66.
    Raichlin ER, McConnell JP, Lerman A, Kremers WK, Edwards BS, Kushwaha SS, Clavell AL, Rodeheffer RJ, Frantz RP (2007) Systemic inflammation and metabolic syndrome in cardiac allograft vasculopathy. J Heart Lung Transplant 26(8):826–833PubMedGoogle Scholar
  67. 67.
    Ropponen JO, Keranen MA, Raissadati A, Nykanen AI, Krebs R, Lemstrom KB, Tikkanen JM (2016) Increased myeloid cell hypoxia-inducible factor-1 delays obliterative airway disease in the mouse. J Heart Lung Transplant 35(5):671–678PubMedGoogle Scholar
  68. 68.
    Rudas L, Pflugfelder PW, McKenzie FN, Menkis AH, Novick RJ, Kostuk WJ (1990) Serial evaluation of lipid profiles and risk factors for development of hyperlipidemia after cardiac transplantation. Am J Cardiol 66(15):1135–1138PubMedGoogle Scholar
  69. 69.
    Salehi S, Sosa RA, Jin YP, Kageyama S, Fishbein MC, Rozengurt E, Kupiec-Weglinski JW, Reed EF (2018) Outside-in HLA class I signaling regulates ICAM-1 clustering and endothelial cell-monocyte interactions via mTOR in transplant antibody-mediated rejection. Am J Transplant 18(5):1096–1109PubMedGoogle Scholar
  70. 70.
    Schiechl G, Hermann FJ, Rodriguez Gomez M, Kutzi S, Schmidbauer K, Talke Y, Neumayer S, Goebel N, Renner K, Bruhl H, Karasuyama H, Obata-Ninomiya K, Utpatel K, Evert M, Hirt SW, Geissler EK, Fichtner-Feigl S, Mack M (2016) Basophils trigger fibroblast activation in cardiac allograft fibrosis development. Am J Transplant 16(9):2574–2588PubMedGoogle Scholar
  71. 71.
    Schiopu A, Nadig SN, Cotoi OS, Hester J, van Rooijen N, Wood KJ (2012) Inflammatory Ly-6C(hi) monocytes play an important role in the development of severe transplant arteriosclerosis in hyperlipidemic recipients. Atherosclerosis 223(2):291–298PubMedPubMedCentralGoogle Scholar
  72. 72.
    Schoppmann SF, Birner P, Stöckl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K, Kerjaschki D (2002) Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161(3):947–956PubMedPubMedCentralGoogle Scholar
  73. 73.
    Seipelt IM, Pahl E, Seipelt RG, Mavroudis C, Backer CL, Stellmach V, Cornwell M, Crawford SE (2005) Neointimal inflammation and adventitial angiogenesis correlate with severity of cardiac allograft vasculopathy in pediatric recipients. J Heart Lung Transplant 24(8):1039–1045PubMedGoogle Scholar
  74. 74.
    Shen H, Heuzey E, Mori DN, Wong CK, Colangelo CM, Chung LM, Bruce C, Slizovskiy IB, Booth CJ, Kreisel D, Goldstein DR (2015) Haptoglobin enhances cardiac transplant rejection. Circ Res 116(10):1670–1679PubMedPubMedCentralGoogle Scholar
  75. 75.
    Shimizu K, Libby P, Shubiki R, Sakuma M, Wang Y, Asano K, Mitchell RN, Simon DI (2008) Leukocyte integrin Mac-1 promotes acute cardiac allograft rejection. Circulation 117(15):1997–2008PubMedPubMedCentralGoogle Scholar
  76. 76.
    Sibinga NE, Feinberg MW, Yang H, Werner F, Jain MK (2002) Macrophage-restricted and interferon gamma-inducible expression of the allograft inflammatory factor-1 gene requires Pu.1. J Biol Chem 277(18):16202–16210PubMedGoogle Scholar
  77. 77.
    Su CA, Iida S, Abe T, Fairchild RL (2014) Endogenous memory CD8 T cells directly mediate cardiac allograft rejection. Am J Transplant 14(3):568–579PubMedPubMedCentralGoogle Scholar
  78. 78.
    Sykes M, Levy G (2011) Advances in transplantation. Semin Immunol 23(4):222–223PubMedGoogle Scholar
  79. 79.
    Tabas I (2017) 2016 Russell Ross memorial lecture in vascular biology: molecular-cellular mechanisms in the progression of atherosclerosis. Arterioscler Thromb Vasc Biol 37(2):183–189PubMedGoogle Scholar
  80. 80.
    Uehara S, Chase CM, Cornell LD, Madsen JC, Russell PS, Colvin RB (2007) Chronic cardiac transplant arteriopathy in mice: relationship of alloantibody, C4d deposition and neointimal fibrosis. Am J Transplant 7(1):57–65PubMedGoogle Scholar
  81. 81.
    Vandivier RW, Henson PM, Douglas IS (2006) Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest 129(6):1673–1682PubMedGoogle Scholar
  82. 82.
    Wehner JR, Fox-Talbot K, Halushka MK, Ellis C, Zachary AA, Baldwin WM 3rd (2010) B cells and plasma cells in coronaries of chronically rejected cardiac transplants. Transplantation 89(9):1141–1148PubMedGoogle Scholar
  83. 83.
    Wu AH, Ballantyne CM, Short BC, Torre-Amione G, Young JB, Ventura HO, Eisen HJ, Radovancevic B, Rayburn BK, Lake KD, Yancy CW, Taylor DO, Mehra MR, Kubo SH, Fishbein DP, Zhao X-Q, O'Brien KD (2005) Statin use and risks of death or fatal rejection in the Heart Transplant Lipid Registry. Am J Cardiol 95(3):367–372PubMedGoogle Scholar
  84. 84.
    Xu M, Wang X, Banan B, Chirumbole DL, Garcia-Aroz S, Balakrishnan A, Nayak DK, Zhang Z, Jia J, Upadhya GA, Gaut JP, Hiebsch R, Manning PT, Wu N, Lin Y, Chapman WC (2018) Anti-CD47 monoclonal antibody therapy reduces ischemia-reperfusion injury of renal allografts in a porcine model of donation after cardiac death. Am J Transplant 18(4):855–867PubMedGoogle Scholar
  85. 85.
    Zecher D, van Rooijen N, Rothstein DM, Shlomchik WD, Lakkis FG (2009) An innate response to allogeneic nonself mediated by monocytes. J Immunol 183(12):7810–7816PubMedGoogle Scholar
  86. 86.
    Zeng Q, Ng YH, Singh T, Jiang K, Sheriff KA, Ippolito R, Zahalka S, Li Q, Randhawa P, Hoffman RA, Ramaswami B, Lund FE, Chalasani G (2014) B cells mediate chronic allograft rejection independently of antibody production. J Clin Invest 124(3):1052–1056PubMedPubMedCentralGoogle Scholar
  87. 87.
    Zheng Z, Chiu S, Akbarpour M, Sun H, Reyfman PA, Anekalla KR, Abdala-Valencia H, Edgren D, Li W, Kreisel D, Korobova FV, Fernandez R, McQuattie-Pimentel A, Zhang ZJ, Perlman H, Misharin AV, Scott Budinger GR, Bharat A (2017) Donor pulmonary intravascular nonclassical monocytes recruit recipient neutrophils and mediate primary lung allograft dysfunction. Sci Transl Med 9(394):eaal4508PubMedPubMedCentralGoogle Scholar
  88. 88.
    Zhuang Q, Liu Q, Divito SJ, Zeng Q, Yatim KM, Hughes AD, Rojas-Canales DM, Nakao A, Shufesky WJ, Williams AL, Humar R, Hoffman RA, Shlomchik WD, Oberbarnscheidt MH, Lakkis FG, Morelli AE (2016) Graft-infiltrating host dendritic cells play a key role in organ transplant rejection. Nat Commun 7:12623PubMedPubMedCentralGoogle Scholar
  89. 89.
    Zolk O, Solbach TF, Eschenhagen T, Weidemann A, Fromm MF (2008) Activation of negative regulators of the hypoxia-inducible factor (HIF) pathway in human end-stage heart failure. Biochem Biophys Res Commun 376(2):315–320PubMedGoogle Scholar
  90. 90.
    Zouggari Y, Ait-Oufella H, Bonnin P, Simon T, Sage AP, Guerin C, Vilar J, Caligiuri G, Tsiantoulas D, Laurans L, Dumeau E, Kotti S, Bruneval P, Charo IF, Binder CJ, Danchin N, Tedgui A, Tedder TF, Silvestre JS, Mallat Z (2013) B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med 19(10):1273–1280PubMedPubMedCentralGoogle Scholar
  91. 91.
    Zhao Y, Chen S, Lan P, Wu C, Dou Y, Xiao X, Zhang Z, Minze L, He X, Chen W, Li XC (2018) Macrophage subpopulations and their impact on chronic allograft rejection versus graft acceptance in a mouse heart transplant model. Am J Transplant 18(3):604–616PubMedGoogle Scholar
  92. 92.
    Ueno T, Tanaka K, Jurewicz M, Murayama T, Guleria I, Fiorina P, Paez JC, Augello A, Vergani A, Wong M, Smith RN, Abdi R (2009) Divergent Role of Donor Dendritic Cells in Rejection versus Tolerance of Allografts. J Am Soc Nephrol 20(3):535–544PubMedPubMedCentralGoogle Scholar
  93. 93.
    Yamada A, Chandraker A, Laufer TM, Gerth AJ, Sayegh MH, Auchincloss H (2001) Cutting Edge: Recipient MHC Class II Expression Is Required to Achieve Long-Term Survival of Murine Cardiac Allografts After Costimulatory Blockade. J Immunol 167(10):5522–5526PubMedGoogle Scholar
  94. 94.
    Salama M, Andrukhova O, Roedler S, Zuckermann A, Laufer G, Aharinejad S (2011) Association of CD14+ monocyte-derived progenitor cells with cardiac allograft vasculopathy. J Thorac Cardiovasc Surg 142(5):1246–1253PubMedPubMedCentralGoogle Scholar
  95. 95.
    Holzhauser L, Arnold KA, Schroeder A, Imamura T, Nguyen A, Chung B, Narang N, Costanzo M, Jeevanandam V, Murks C, Riley T, Powers J, Sarswat N, Kalantari S, Raikhelkar J, Sayer G, Kim G, Uriel N, Alenghat FJ (2018) Circulating Monocyte Subtypes Correlate with Cardiac Allograft Vasculopathy and Differ from Atherosclerotic Disease: A Tool for Monitoring? J Heart Lung Transplant 37(4):S174–S175Google Scholar
  96. 96.
    Yin Q, Jiang D, Li L, Yang Y, wu P, Luo Y, Yang R, Li D (2018) LPS Promotes Vascular Smooth Muscle Cells Proliferation Through the TLR4/Rac1/Akt Signalling Pathway. Cell Physiol Biochem 44(6):2189–2200Google Scholar
  97. 97.
    Pilmore HL, Painter DM, Bishop GA, McCaughan GW, Eris JM (2000) Early up-regulation of macrophages and myofibroblasts: a new marker for development of chronic renal allograft rejection. Transplantation 69(12):2658–2662PubMedGoogle Scholar
  98. 98.
    Bennett MR, Sinha S, Owens GK (2016) Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res 118(4):692–702PubMedPubMedCentralGoogle Scholar
  99. 99.
    Pober JS, Jane-wit D, Qin L, Tellides G (2014) Interacting Mechanisms in the Pathogenesis of Cardiac Allograft Vasculopathy. Arterioscler Thromb Vasc Biol 34(8):1609–1614PubMedPubMedCentralGoogle Scholar
  100. 100.
    Mason DP, Kenagy RD, Hasenstab D, Bowen-Pope DF, Seifert RA, Coats S, Hawkins SM, Clowes AW (1999) Matrix Metalloproteinase-9 Overexpression Enhances Vascular Smooth Muscle Cell Migration and Alters Remodeling in the Injured Rat Carotid Artery. Circ Res 85:1179–1185PubMedGoogle Scholar
  101. 101.
    Yin JL, Hambly BD, Bao SS, Dorothy P, Alex Bishop G, Eris JM (2003) Expression of growth arrest-specific gene 6 and its receptors in dysfunctional human renal allografts. Transpl Int 16(9):681–688PubMedGoogle Scholar
  102. 102.
    Schif-Zuck S, Gross N, Assi S, Rostoker R, Serhan CN, Ariel A (2011) Saturated-efferocytosis generates pro-resolving CD11blow macrophages: Modulation by resolvins and glucocorticoids. Eur J Immunol 41(2):366–379PubMedGoogle Scholar
  103. 103.
    Cai B, Thorp EB, Doran AC, Sansbury BE, Daemen MJAP, Dorweiler B, Spite M, Fredman G, Tabas I (2017) MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis. J Clin Investig 127(2):564–568PubMedGoogle Scholar
  104. 104.
    Wan E, Yeap XY, Dehn S, Terry R, Novak M, Zhang S, Iwata S, Han X, Homma S, Drosatos K, Lomasney J, Engman DM, Miller SD, Vaughan DE, Morrow JP, Kishore R, Thorp EB (2013) Enhanced Efferocytosis of Apoptotic Cardiomyocytes Through Myeloid-Epithelial-Reproductive Tyrosine Kinase Links Acute Inflammation Resolution to Cardiac Repair After Infarction. Circ Res 113(8):1004–1012PubMedGoogle Scholar
  105. 105.
    Zagórska A, Través PG, Lew ED, Dransfield I, Lemke G (2014) Diversification of TAM receptor tyrosine kinase function. Nat Immunol 15(10):920–928PubMedPubMedCentralGoogle Scholar
  106. 106.
    Autieri MV, Kelemen SE, Wendt KW (2003) AIF-1 Is an Actin-Polymerizing and Rac1-Activating Protein That Promotes Vascular Smooth Muscle Cell Migration. Circ Res 92:1107–1114PubMedGoogle Scholar
  107. 107.
    Bézie S, Picarda E, Ossart J, Tesson L, Usal C, Renaudin K, Anegon I, Guillonneau C (2015) IL-34 is a Treg-specific cytokine and mediates transplant tolerance. J Clin Investig 125(10):3952–3964PubMedGoogle Scholar
  108. 108.
    Foucher ED, Blanchard S, Preisser L, Garo E, Ifrah N, Guardiola P, Delneste Y, Jeannin P, Nataf S (2013) IL-34 Induces the Differentiation of Human Monocytes into Immunosuppressive Macrophages. Antagonistic Effects of GM-CSF and IFNγ. PLoS One 8(2):e56045PubMedPubMedCentralGoogle Scholar
  109. 109.
    Pascual-Figal DA, Garrido IP, Blanco R, Minguela A, Lax A, Ordoñez-Llanos J, Bayes-Genis A, Valdés M, Moore SA, Januzzi JL (2011) Soluble ST2 Is a Marker for Acute Cardiac Allograft Rejection. Ann Thorac Surg 92(6):2118–2124PubMedGoogle Scholar
  110. 110.
    Turnquist HR, Zhao Z, Rosborough BR, Liu Q, Castellaneta A, Isse K, Wang Z, Lang M, Beer Stolz D, Zheng XX, Demetris AJ, Liew FY, Wood KJ, Thomson AW (2011) IL-33 Expands Suppressive CD11b+ Gr-1int and Regulatory T Cells, including ST2L+ Foxp3+ Cells, and Mediates Regulatory T Cell-Dependent Promotion of Cardiac Allograft Survival. J Immunol 187(9):4598–4610PubMedPubMedCentralGoogle Scholar
  111. 111.
    Martel C, Li W, Fulp B, Platt AM, Gautier EL, Westerterp M, Bittman R, Tall AR, Chen S-H, Thomas MJ, Kreisel D, Swartz MA, Sorci-Thomas MG, Randolph GJ (2013) Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Investig 123(4):1571–1579PubMedGoogle Scholar
  112. 112.
    Edwards LA, Nowocin AK, Jafari NV, Meader LL, Brown K, Sarde A, Lam C, Murray A, Wong W (2018) Chronic Rejection of Cardiac Allografts Is Associated With Increased Lymphatic Flow and Cellular Trafficking. Circulation 137(5):488–503PubMedGoogle Scholar
  113. 113.
    Aspelund A, Robciuc MR, Karaman S, Makinen T, Alitalo K (2016) Lymphatic System in Cardiovascular Medicine. Circ Res 118(3):515–530PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pathology, The Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  2. 2.Feinberg Cardiovascular and Renal Research Institute, The Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  3. 3.Department of Surgery, The Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  4. 4.Ann and Robert H. Lurie Children’s Hospital of ChicagoChicagoUSA
  5. 5.Department of Medicine, The Feinberg School of MedicineNorthwestern UniversityChicagoUSA

Personalised recommendations