Seminars in Immunopathology

, Volume 41, Issue 1, pp 97–109 | Cite as

Cancer immune therapy for myeloid malignancies: present and future

  • Morten Orebo HolmströmEmail author
  • Hans Carl Hasselbalch


The myelodysplastic syndromes, the chronic myeloproliferative neoplasms, and the acute myeloid leukemia are malignancies of the myeloid hematopoietic stem cells of the bone marrow. The diseases are characterized by a dysregulation of the immune system as both the cytokine milieu, immune phenotype, immune regulation, and expression of genes related to immune cell functions are deregulated. Several treatment strategies try to circumvent this deregulation, and several clinical and preclinical trials have shown promising results, albeit not in the same scale as chimeric antigen receptor T cells have had in the treatment of refractory lymphoid malignancies. The use of immune checkpoint blocking antibodies especially in combination with hypomethylating agents has had some success—a success that will likely be enhanced by therapeutic cancer vaccination with tumor-specific antigens. In the chronic myeloproliferative neoplasms, the recent identification of immune responses against the Januskinase-2 and calreticulin exon 9 driver mutations could also be used in the vaccination setting to enhance the anti-tumor immune response. This immune response could probably be enhanced by the concurrent use of immune checkpoint inhibitors or by vaccination with epitopes from immune regulatory proteins such as arginase-1 and programmed death ligand-1. Herein, we provide an overview of current cancer immune therapeutic treatment strategies as well as potential future cancer immune therapeutic treatment options for the myeloid malignancies.


Acute myeloid leukemia Myelodysplastic syndrome Myeloproliferative neoplasms Immune therapy Cancer vaccines Antigens 


Funding sources

This study was supported in part by a grant from Danish Cancer Society to HCH (grant number R149-A10159).

Compliance with ethical standards

Conflict of interest

No authors have conflict of interest to disclose. However, it should be noted that Morten Orebo Holmström and Hans Carl Hasselbalch together with Mads Hald Andersen have filed a patent regarding the CALR exon 9 mutations and JAK2V61F mutation as a target for cancer immune therapy. The patent has been transferred to University Hospital Zealand, Zealand Region and Copenhagen University Hospital at Herlev, Capital Region according to Danish Law concerning inventions made at public research institutions.


  1. 1.
    Vercauteren SM, Starczynowski DT, Sung S, McNeil K, Salski C, Jensen CL, Bruyere H, Lam WL, Karsan A (2012) T cells of patients with myelodysplastic syndrome are frequently derived from the malignant clone. Br J Haematol 156(3):409–412Google Scholar
  2. 2.
    Larsen TS, Christensen JH, Hasselbalch HC, Pallisgaard N (2007) The JAK2 V617F mutation involves B- and T-lymphocyte lineages in a subgroup of patients with Philadelphia-chromosome negative chronic myeloproliferative disorders. Br J Haematol 136:745–751Google Scholar
  3. 3.
    Kjaer L, Holmström MO, Cordua S, Andersen MH, Svane IM, Thomassen M, Kruse TA, Pallisgaard N, Skov V, Hasselbalch HC (2018) Sorted peripheral blood cells identify CALR mutations in B- and T-lymphocytes. Leuk Lymphoma 59:973–977Google Scholar
  4. 4.
    Dickinson AM, Norden J, Li S, Hromadnikova I, Schmid C et al (2017) Graft-versus-leukemia effect following hematopoietic stem cell transplantation for leukemia. Front Immunol 7:496Google Scholar
  5. 5.
    Le Dieu R, Taussig DC, Ramsay AG, Mitter R, Miraki-Moud F et al (2009) Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood 114:3909–3916Google Scholar
  6. 6.
    Schnorfeil FM, Lichtenegger FS, Emmerig K, Schlueter M, Neitz JS, Draenert R, Hiddemann W, Subklewe M (2015) T cells are functionally not impaired in AML: increased PD-1 expression is only seen at time of relapse and correlates with a shift towards the memory T cell compartment. J Hematol Oncol 8:93Google Scholar
  7. 7.
    Jia B, Wang L, Claxton DF, Ehmann WC, Rybka WB, Mineishi S, Rizvi S, Shike H, Bayerl M, Schell TD, Hohl RJ, Zheng H (2018) Bone marrow CD8 T cells express high frequency of PD-1 and exhibit reduced anti-leukemia response in newly diagnosed AML patients. Blood Cancer J 8:34Google Scholar
  8. 8.
    Szczepanski MJ, Szajnik M, Czystowska M, Mandapathil M, Strauss L, Welsh A, Foon KA, Whiteside TL, Boyiadzis M (2009) Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res 15:3325–3332Google Scholar
  9. 9.
    Shenghui Z, Yixiang H, Jianbo W, Kang Y, Laixi B, Yan Z, Xi X (2011) Elevated frequencies of CD4+CD25+CD127lo regulatory T cells is associated to poor prognosis in patients with acute myeloid leukemia. Int J Cancer 129:1373–1381Google Scholar
  10. 10.
    Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng QR, Fang Z, Nguyen M, Pierce S, Wei Y, Parmar S, Cortes J, Kantarjian H, Garcia-Manero G (2014) Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 28:1280–1288Google Scholar
  11. 11.
    Ørskov AD, Treppendahl MB, Skovbo A, Holm MS, Friis LS et al (2015) Hypomethylation and up-regulation of PD-1in T cells by azacytidine in MDS/AML patients: a rationale for combined targeting of PD-1 and DNA methylation. Oncotarget 6:9612–9626Google Scholar
  12. 12.
    Kordasti SY, Ingram W, Hayden J, Darling D, Barber L, Afzali B, Lombardi G, Wlodarski MW, Maciejewski JP, Farzaneh F, Mufti GJ (2007) CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood 110:847–850Google Scholar
  13. 13.
    Chen X, E a E, Zhou J, Zhang L, Djeu J et al (2013) Induction of myelodysplasia by myeloid- derived suppressor cells. J Clin Invest 123:4595–4611Google Scholar
  14. 14.
    Mussai F, De Santo C, Abu-Dayyeh I, Booth S, Quek L et al (2013) Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood 122:749–758Google Scholar
  15. 15.
    Chamuleau MED, Van De Loosdrecht AA, Hess CJ, Janssen JJWM, Zevenbergen A et al (2008) High INDO (indoleamine 2,3-dioxygenase) mRNA level in blasts of acute myeloid leukemic patients predicts poor clinical outcome. Haematologica 93:1894–1898Google Scholar
  16. 16.
    Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A et al (2006) Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25+ T regulatory cells. Blood 109:2871–2878Google Scholar
  17. 17.
    Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC et al (2014) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372:1–9Google Scholar
  18. 18.
    Zeidan AM, Zeidner JF, Duffield A, Knaus HA, Ferguson A et al (2015) Stabilization of myelodysplastic syndromes (MDS) following hypomethylating agent (HMAs) failure using the immune checkpoint inhibitor Ipilimumab: a phase I trial. Blood 126:1666–1666Google Scholar
  19. 19.
    Garcia-Manero G, Daver N, Montalban-Bravo G, Jabbour E, DiNardo C, et al. An update of a phase II study of nivolumab (NIVO) or ipilimumab (IP) with azacitidine in Pts with previously treated or untreated myelodysplastic syndromes (MDS)
  20. 20.
    Daver N, Basu S, Garcia-Manero G, Cortes JE, Ravandi F et al (2017) Phase IB/II study of nivolumab with azacytidine (AZA) in patients (pts) with relapsed AML. J Clin Oncol 35:7026Google Scholar
  21. 21.
    Vey N, Dumas P-Y, Recher C, Gastaud L, Lioure B et al (2017) Randomized phase 2 trial of lirilumab (anti-KIR monoclonal antibody, mAb) as maintenance treatment in elderly patients (pts) with acute myeloid leukemia (AML): results of the Effikir trial. Blood 130:889Google Scholar
  22. 22.
    Daver N, Boddu P, Guillermo G-M, Ravandi F, Jabbour E et al (2017) Phase IB/II study of lirilumab with azacytidine (AZA) in relapsed AML. Blood 130:2634Google Scholar
  23. 23.
    Qazilbash MH, Wieder E, Rios R, Lu S, Kant S et al (2004) Vaccination with the PR1 leukemia-associated antigen can induce complete remission in patients with myeloid leukemia. Blood 104:259Google Scholar
  24. 24.
    Rezvani K, Yong ASM, Mielke S, Savani BN, Musse L, Superata J, Jafarpour B, Boss C, Barrett AJ (2008) Leukemia-associated antigen specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 111:236–242Google Scholar
  25. 25.
    Keilholz U, Letsch A, Busse A, Asemissen AM, Bauer S, Blau IW, Hofmann WK, Uharek L, Thiel E, Scheibenbogen C (2009) A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood 113:6541–6548Google Scholar
  26. 26.
    Uttenthal B, Martinez-Davila I, Ivey A, Craddock C, Chen F, Virchis A, Kottaridis P, Grimwade D, Khwaja A, Stauss H, Morris EC (2014) Wilms’ tumour 1 (WT1) peptide vaccination in patients with acute myeloid leukaemia induces short-lived WT1-specific immune responses. Br J Haematol 164:366–375Google Scholar
  27. 27.
    Maslak PG, Dao T, Bernal Y, Chanel SM, Zhang R, Frattini M, Rosenblat T, Jurcic JG, Brentjens RJ, Arcila ME, Rampal R, Park JH, Douer D, Katz L, Sarlis N, Tallman MS, Scheinberg DA (2018) Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Adv 2:224–234Google Scholar
  28. 28.
    Tsuboi A, Oka Y, Kyo T, Katayama Y, Elisseeva OA, Kawakami M, Nishida S, Morimoto S, Murao A, Nakajima H, Hosen N, Oji Y, Sugiyama H (2012) Long-term WT1 peptide vaccination for patients with acute myeloid leukemia with minimal residual disease. Leukemia 26:1410–1413Google Scholar
  29. 29.
    Brayer J, Lancet JE, Powers J, List A, Balducci L, Komrokji R, Pinilla-Ibarz J (2015) WT1 vaccination in AML and MDS: a pilot trial with synthetic analog peptides. Am J Hematol 90:602–607Google Scholar
  30. 30.
    Qazilbash MH, Wieder E, Thall PF, Wang X, Rios R, Lu S, Kanodia S, Ruisaard KE, Giralt SA, Estey EH, Cortes J, Komanduri KV, Clise-Dwyer K, Alatrash G, Ma Q, Champlin RE, Molldrem JJ (2017) PR1 peptide vaccine induces specific immunity with clinical responses in myeloid malignancies. Leukemia 31:697–704Google Scholar
  31. 31.
    Anguille S, Van De Velde AL, Smits EL, Van Tendeloo VF, Juliusson G et al (2017) Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood 130:1713–1721Google Scholar
  32. 32.
    Almstedt M, Blagitko-Dorfs N, Duque-Afonso J, Karbach J, Pfeifer D, Jäger E, Lübbert M (2010) The DNA demethylating agent 5-aza-2′-deoxycytidine induces expression of NY-ESO-1 and other cancer/testis antigens in myeloid leukemia cells. Leuk Res 34:899–905Google Scholar
  33. 33.
    Srivastava P, Paluch BE, Matsuzaki J, James SR, Collamat-Lai G, Blagitko-Dorfs N, Ford LA, Naqash R, Lübbert M, Karpf AR, Nemeth MJ, Griffiths EA (2016) Induction of cancer testis antigen expression in circulating acute myeloid leukemia blasts following hypomethylating agent monotherapy. Oncotarget 7:12840–12856Google Scholar
  34. 34.
    Gang AO, Frøsig TM, Brimnes MK, Lyngaa R, Treppendahl MB, Grønbæk K, Dufva IH, Straten P, Hadrup SR (2014) 5-Azacytidine treatment sensitizes tumor cells to T-cell mediated cytotoxicity and modulates NK cells in patients with myeloid malignancies. Blood Cancer J. 4:e197Google Scholar
  35. 35.
    Griffiths EA, Srivastava P, Matsuzaki J, Brumberger Z, Wang ES et al (2017) NY-ESO-1 vaccination in combination with decitabine induces antigen-specific T-lymphocyte responses in patients with myelodysplastic syndrome. Clin Cancer Res 24:1019–1029Google Scholar
  36. 36.
    Mehta RS, Chen X, Antony J, Boyiadzis M, Szabolcs P (2016) Generating peripheral blood derived lymphocytes reacting against autologous primary AML blasts. J Immunother 39:71–80Google Scholar
  37. 37.
    Rosenblatt J, Stone RM, Uhl L, Neuberg D, Joyce R, Levine JD, Arnason J, McMasters M, Luptakova K, Jain S, Zwicker JI, Hamdan A, Boussiotis V, Steensma DP, DeAngelo DJ, Galinsky I, Dutt PS, Logan E, Bryant MP, Stroopinsky D, Werner L, Palmer K, Coll M, Washington A, Cole L, Kufe D, Avigan D (2016) Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Sci Transl Med 8:368ra171Google Scholar
  38. 38.
    Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, la Starza R, Diverio D, Colombo E, Santucci A, Bigerna B, Pacini R, Pucciarini A, Liso A, Vignetti M, Fazi P, Meani N, Pettirossi V, Saglio G, Mandelli F, Lo-Coco F, Pelicci PG, Martelli MF, GIMEMA Acute Leukemia Working Party (2005) Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352:254–266Google Scholar
  39. 39.
    Greiner J, Ono Y, Hofmann S, Schmitt A, Mehring E et al (2016) Mutated regions of nucleophosmin 1 elicit both CD4+ and CD8+ T-cell responses in patients with acute myeloid leukemia. Blood 97:1282–1290Google Scholar
  40. 40.
    Greiner J, Schneider V, Schmitt M, Götz M, Döhner K et al (2013) Immune responses against the mutated region of cytoplasmatic NPM1 might contribute to the favorable clinical outcome of AML patients with NPM1 mutations (NPM1mut). Blood 122:1087–1088Google Scholar
  41. 41.
    Kuželová K, Brodská B, Fuchs O, Dobrovolná M, Soukup P, Cetkovský P (2015) Altered HLA class I profile associated with type A/D nucleophosmin mutation points to possible anti-nucleophosmin immune response in acute myeloid leukemia. PLoS One 10:1–12Google Scholar
  42. 42.
    Greiner J, Hofmann S, Schmitt M, Götz M, Wiesneth M, Schrezenmeier H, Bunjes D, Döhner H, Bullinger L (2017) Acute myeloid leukemia with mutated nucleophosmin 1—an immunogenic AML subtype and potential candidate for immune checkpoint inhibition. Haematologica 102:e499–e501Google Scholar
  43. 43.
    Scholl S, Salzmann S, Kaufmann A, Höffken K (2006) Flt3-ITD mutations can generate leukaemia specific neoepitopes: potential role for immunotherapeutic approaches. Leuk Lymphoma 47:307–312Google Scholar
  44. 44.
    O’Hear C, Heiber JF, Schubert I, Fey G, Geiger TL (2015) Anti-CD33 chimeric antigen receptor targeting of acute myeloid leukemia. Haematologica 100:336–344Google Scholar
  45. 45.
    Mardiros A, Dos SC (2013) T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood 122:3138–3148Google Scholar
  46. 46.
    Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T, Tainton K, Chen K, Shin M, Wall DM, Hönemann D, Gambell P, Westerman DA, Haurat J, Westwood JA, Scott AM, Kravets L, Dickinson M, Trapani JA, Smyth MJ, Darcy PK, Kershaw MH, Prince HM (2013) Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther 21:2122–2129Google Scholar
  47. 47.
    Hofmann S, Götz M, Scheider V, Guillaume P, Bunjes D et al (2013) Donor lymphocyte infusion induces polyspecific CD8+ T-cell responses with concurrent molecular remission in acute myeloid leukemia with NPM1 mutation. J Clin Oncol 31:2013–2015Google Scholar
  48. 48.
    Lee JB, Minden MD, Chen WC, Streck E, Chen B et al (2017) Allogeneic human double negative T cells as a novel immunotherapy for acute myeloid leukemia and its underlying mechanisms. Clin Cancer Res 24:370–382Google Scholar
  49. 49.
    Krupka C, Kufer P, Kischel R, Zugmaier G, Bögeholz J et al (2014) CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood 123:356–365Google Scholar
  50. 50.
    Krupka C, Kufer P, Kischel R, Zugmaier G, Lichtenegger FS, Köhnke T, Vick B, Jeremias I, Metzeler KH, Altmann T, Schneider S, Fiegl M, Spiekermann K, Bauerle PA, Hiddemann W, Riethmüller G, Subklewe M (2016) Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia 30:484–491Google Scholar
  51. 51.
    Martner A, Rydström A, Riise RE, Aurelius J, Anderson H et al (2016) Role of natural killer cell subsets and natural cytotoxicity receptors for the outcome of immunotherapy in acute myeloid leukemia. Oncoimmunology 5:1–11Google Scholar
  52. 52.
    Bernson E, Hallner A, Sander FE, Wilsson O, Werlenius O, Rydström A, Kiffin R, Brune M, Foà R, Aurelius J, Martner A, Hellstrand K, Thorén FB (2017) Impact of killer-immunoglobulin-like receptor and human leukocyte antigen genotypes on the efficacy of immunotherapy in acute myeloid leukemia. Leukemia 31:2552–2559Google Scholar
  53. 53.
    Spivak JL (2017) Myeloproliferative neoplasms. N Engl J Med 376:2168–2181Google Scholar
  54. 54.
    Butt NM, Rojas JM, Wang L, Christmas SE, Abu-Eisha HM, Clark RE (2005) Circulating bcr-abl-specific CD8+ T cells in chronic myeloid leukemia patients and healthy subjects. Haematologica 90:1315–1323PubMedGoogle Scholar
  55. 55.
    Rusakiewicz S, Madrigal A, Travers P, Dodi AI (2009) BCR/ABL-specific CD8+ T cells can be detected from CML patients, but are only expanded from healthy donors. Cancer Immunol Immunother 58:1449–1457Google Scholar
  56. 56.
    Berke Z, Andersen MH, Pedersen M, Fugger L, Zeuthen J, Haurum JS (2000) Peptides spanning the junctional region of both the abl/bcr and the bcr/abl fusion proteins bind common HLA class I molecules. Leukemia 14:419–426Google Scholar
  57. 57.
    Posthuma EF, Falkenburg JH, Apperley JF, Gratwohl A, Roosnek E et al (1999) HLA-B8 and HLA-A3 coexpressed with HLA-B8 are associated with a reduced risk of the development of chronic myeloid leukemia. Blood 93:3863–3865PubMedGoogle Scholar
  58. 58.
    Pinilla-Ibarz J, Cathcart K, Korontsvit T, Soignet S, Bocchia M, Caggiano J, Lai L, Jimenez J, Kolitz J, Scheinberg DA (2000) Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood 95:1781–1787PubMedGoogle Scholar
  59. 59.
    Brauer KM, Werth D, Von Schwarzenberg K, Bringmann A, Kanz L et al (2007) BCR-ABL activity is critical for the immunogenicity of chronic myelogenous leukemia cells. Cancer Res 67:5489–5497Google Scholar
  60. 60.
    Bocchia M, Defina M, Aprile L, Ippoliti M, Crupi R, Rondoni M, Gozzetti A, Lauria F (2010) Complete molecular response in CML after p210 BCR-ABL1-derived peptide vaccination. Nat Rev Clin Oncol 7:600–603Google Scholar
  61. 61.
    Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJP, Boggon TJ, Wlodarska I, Clark JJ, Moore S, Adelsperger J, Koo S, Lee JC, Gabriel S, Mercher T, D’Andrea A, Fröhling S, Döhner K, Marynen P, Vandenberghe P, Mesa RA, Tefferi A, Griffin JD, Eck MJ, Sellers WR, Meyerson M, Golub TR, Lee SJ, Gilliland DG (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7:387–397Google Scholar
  62. 62.
    Kralovics R, Passamonti F, Buser AAS, Teo S-SS-S, Tiedt R et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352:1779–1790Google Scholar
  63. 63.
    Verstovsek S, R a M, Gotlib J, Levy RS, Gupta V et al (2012) A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 366:799–807Google Scholar
  64. 64.
    Cervantes F, Pereira A (2017) Does ruxolitinib prolong the survival of patients with myelofibrosis? Blood 129:832–838Google Scholar
  65. 65.
    Marti-Carvajal AJ, Anand V, Sola I (2015) Janus kinase-1 and Janus kinase-2 inhibitors for treating myelofibrosis. Cochrane Database Syst Rev 4:CD010298Google Scholar
  66. 66.
    Pourcelot E, Trocme C, Mondet J, Bailly S, Toussaint B, Mossuz P (2014) Cytokine profiles in polycythemia vera and essential thrombocythemia patients: clinical implications. Exp Hematol 42:360–368Google Scholar
  67. 67.
    Tefferi A, Vaidya R, Caramazza D, Finke C, Lasho T, Pardanani A (2011) Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol 29:1356–1363Google Scholar
  68. 68.
    Bjørn ME, Andersen CL, Jensen MK, Hasselbalch HC (2014) Circulating YKL-40 in myelofibrosis a potential novel biomarker of disease activity and the inflammatory state. Eur J Haematol 93:224–228Google Scholar
  69. 69.
    Rameshwar P, Denny TN, Stein D, Gascón P, Rameshwar P et al (1994) Monocyte adhesion in patients with bone marrow fibrosis is required for the production of fibrogenic cytokines. Potential role for interleukin-1 and TGF-beta. J Immunol 153:2819–2830PubMedGoogle Scholar
  70. 70.
    Skov V, Riley CH, Thomassen M, Larsen TS, Jensen MK, Bjerrum OW, Kruse TA, Hasselbalch HC (2013) Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocythemia, polycythemia vera and myelofibrosis. Leuk Lymphoma 54:2269–2273Google Scholar
  71. 71.
    Skov V, Larsen TS, Thomassen M, Riley CH, Jensen MK, Bjerrum OW, Kruse TA, Hasselbalch HC (2012) Molecular profiling of peripheral blood cells from patients with polycythemia vera and related neoplasms: identification of deregulated genes of significance for inflammation and immune surveillance. Leuk Res 36:1387–1392Google Scholar
  72. 72.
    Wang JC, Kundra A, Andrei M, Baptiste S, Chen C, Wong C (2016) Myeloid-derived suppressor cells in patients with myeloproliferative neoplasm. Leuk Res 43:39–43Google Scholar
  73. 73.
    Prestipino A, Emhardt AJ, Aumann K, Sullivan DO’, Gorantla SP et al (2018) Oncogenic JAK2 V617F causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Sci Transl Med 10:1–13Google Scholar
  74. 74.
    Riley CH, Jensen MK, Brimnes MK, Hasselbalch HC, Bjerrum OW, Straten P, Svane IM (2011) Increase in circulating CD4+CD25+Foxp3+ T cells in patients with Philadelphia-negative chronic myeloproliferative neoplasms during treatment with IFN-α. Blood 118:2170–2173Google Scholar
  75. 75.
    Silver RT, Kiladjian J-J, Hasselbalch HC (2013) Interferon and the treatment of polycythemia vera, essential thrombocytemia and myelofibrosis. Exp Hematol 6:1–10Google Scholar
  76. 76.
    Kovacsovics-Bankowski M, Kelley TW, Efimova O, Kim SJ, Wilson A, Swierczek S, Prchal J (2015) Changes in peripheral blood lymphocytes in polycythemia vera and essential thrombocythemia patients treated with pegylated-interferon alpha and correlation with JAK2 V617F allelic burden. Exp Hematol Oncol 5:28Google Scholar
  77. 77.
    Riley CH, Brimnes MK, Hansen M, Jensen MK, Hasselbalch HC, Kjaer L, Straten P, Svane IM (2016) Interferon-α induces marked alterations in circulating regulatory T cells, NK cell subsets, and dendritic cells in patients with JAK2V617F-positive essential thrombocythemia and polycythemia vera. Eur J Haematol 97:83–92Google Scholar
  78. 78.
    Riley CH, Hansen M, Brimnes MK, Hasselbalch HC, Bjerrum OW, Straten P, Svane IM, Jensen MK (2015) Expansion of circulating CD56(bright) natural killer cells in patients with JAK2-positive chronic myeloproliferative neoplasms during treatment with interferon-α. Eur J Haematol 94:227–234Google Scholar
  79. 79.
    Skov V, Riley CH, Thomassen M, Kjær L, Stauffer Larsen T, Bjerrum OW, Kruse TA, Hasselbalch HC (2017) The impact of interferon-alpha2 on HLA genes in patients with polycythemia vera and related neoplasms. Leuk Lymphoma 58:1914–1921Google Scholar
  80. 80.
    Kiladjian J-J, Giraudier S, Cassinat B (2015) Interferon-alpha for the therapy of myeloproliferative neoplasms: targeting the malignant clone. Leukemia 30:1–6Google Scholar
  81. 81.
    Xiong Z, Yan Y, Liu E, Silver RT, Verstovsek S, Yang F, Wang H, Prchal J, Yang XF (2007) Novel tumor antigens elicit anti-tumor humoral immune reactions in a subset of patients with polycythemia vera. Clin Immunol 122:279–287Google Scholar
  82. 82.
    Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, Avezov E, Li J, Kollmann K, Kent DG, Aziz A, Godfrey AL, Hinton J, Martincorena I, van Loo P, Jones AV, Guglielmelli P, Tarpey P, Harding HP, Fitzpatrick JD, Goudie CT, Ortmann CA, Loughran SJ, Raine K, Jones DR, Butler AP, Teague JW, O'Meara S, McLaren S, Bianchi M, Silber Y, Dimitropoulou D, Bloxham D, Mudie L, Maddison M, Robinson B, Keohane C, Maclean C, Hill K, Orchard K, Tauro S, du MQ, Greaves M, Bowen D, Huntly BJP, Harrison CN, Cross NCP, Ron D, Vannucchi AM, Papaemmanuil E, Campbell PJ, Green AR (2013) Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 369:2391–2405Google Scholar
  83. 83.
    Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, Them NCC, Berg T, Gisslinger B, Pietra D, Chen D, Vladimer GI, Bagienski K, Milanesi C, Casetti IC, Sant'Antonio E, Ferretti V, Elena C, Schischlik F, Cleary C, Six M, Schalling M, Schönegger A, Bock C, Malcovati L, Pascutto C, Superti-Furga G, Cazzola M, Kralovics R (2013) Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 369:2379–2390Google Scholar
  84. 84.
    Holmstrom MO, Hjortso MD, Ahmad SM, Met O, Martinenaite E et al (2017) The JAK2V617F mutation is a target for specific T-cells in the JAK2V617F positive myeloproliferative neoplasms. Leukemia 31:495–498Google Scholar
  85. 85.
    Holmstrom MO, Riley CH, Svane IM, Hasselbalch HC, Andersen MH et al (2016) The CALR exon 9 mutations are shared neoantigens in patients with CALR mutant chronic myeloproliferative neoplasms. Leukemia 30:2413–2416Google Scholar
  86. 86.
    Holmstrom MO, Martinenaite E, Ahmad SM, Met O, Friese C et al (2018) The calreticulin (CALR) exon 9 mutations are promising targets for cancer immune therapy. Leukemia 32:429–437Google Scholar
  87. 87.
    Araki M, Yang Y, Masubuchi N, Hironaka Y, Takei H, Morishita S, Mizukami Y, Kan S, Shirane S, Edahiro Y, Sunami Y, Ohsaka A, Komatsu N (2016) Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood 127:1307–1316Google Scholar
  88. 88.
    Melief CJM, van der Burg SH (2008) Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer 8:351–360Google Scholar
  89. 89.
    Anguille S, Lion E, Willemen Y, Van Tendeloo VFI, Berneman ZN, Smits ELJM (2011) Interferon-α in acute myeloid leukemia: an old drug revisited. Leukemia 25:739–748Google Scholar
  90. 90.
    Munir S, Larsen SK, Iversen TZ, Donia M, Klausen TW, Svane IM, Straten P, Andersen MH (2012) Natural CD4 + T-cell responses against indoleamine 2,3-dioxygenase. PLoS One 7:e34568Google Scholar
  91. 91.
    Munir S, Andersen GH, Met Ö, Donia M, Frøsig TM et al (2013) HLA-restricted CTL that are specific for the immune checkpoint ligand PD-L1 occur with high frequency in cancer patients. Cancer Res 73:1764–1776Google Scholar
  92. 92.
    Martinenaite E, Mortensen REJ, Hansen M, Orebo Holmström M, Munir Ahmad S et al (2017) Frequent adaptive immune responses against arginase-1. Oncoimmunology:e1404215Google Scholar
  93. 93.
    Munir Ahmad S, Martinenaite E, Hansen M, Junker N, Borch TH, Met Ö, Donia M, Svane IM, Andersen MH (2016) PD-L1 peptide co-stimulation increases immunogenicity of a dendritic cell-based cancer vaccine. Oncoimmunology. 5:e1202391Google Scholar
  94. 94.
    Ahmad SM, Larsen SK, Svane IM, Andersen MH (2014) Harnessing PD-L1-specific cytotoxic T cells for anti-leukemia immunotherapy to defeat mechanisms of immune escape mediated by the PD-1 pathway. Leukemia 28:236–238Google Scholar
  95. 95.
    Andersen MH (2017) Anti-regulatory T cells. Semin Immunopathol 39:317–326Google Scholar
  96. 96.
    Holmström MO, Riley CH, Skov V, Svane IM, Hasselbalch HC, Andersen MH (2018) Spontaneous T-cell responses against the immune check point programmed-death-ligand 1 (PD-L1) in patients with chronic myeloproliferative neoplasms correlate with disease stage and clinical response. Oncoimmunology 7:e1433521Google Scholar
  97. 97.
    Jørgensen MA, Holmström MO, Martinenaite E, Riley CH, Hasselbalch HC, Andersen MH (2018) Spontaneous T-cell responses against Arginase-1 in chronic myeloproliferative neoplasms relative to disease stage and type of driver mutation. Oncoimmunology.
  98. 98.
    Larsen SK, Munir S, Woetmann A, Frøsig TM, Odum N, Svane IM, Becker JC, Andersen MH (2013) Functional characterization of Foxp3-specific spontaneous immune responses. Leukemia 27:2332–2340Google Scholar
  99. 99.
    Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172:989–999Google Scholar
  100. 100.
    Marty C, Lacout C, Droin N, Le Couédic J-P, Ribrag V et al (2013) A role for reactive oxygen species in JAK2V617F myeloproliferative neoplasm progression. Leukemia 27:2187–2195Google Scholar
  101. 101.
    Zhang X, Lv Z, Yu H, Zhu J (2017) The clinicopathological and prognostic role of thrombocytosis in patients with cancer: a meta-analysis. Oncol Lett 13:5002–5008Google Scholar
  102. 102.
    Hasselbalch HC (2014) The platelet-cancer loop in myeloproliferative cancer. Is thrombocythemia an enhancer of cancer invasiveness and metastasis in essential thrombocythemia, polycythemia vera and myelofibrosis? Leuk Res 38:1230–1236Google Scholar
  103. 103.
    Frederiksen H, Farkas DK, Christiansen CF, Larsen TS, Hasselbalch HC, Stentoft J, Sørensen HT (2015) Survival of patients with chronic myeloproliferative neoplasms and new primary cancers: a population-based cohort study. Lancet Haematol 2:e289–e296Google Scholar
  104. 104.
    Frederiksen H, Farkas DK, Christiansen CF, Hasselbalch HC, Sørensen HT, Sorensen HT (2011) Chronic myeloproliferative neoplasms and subsequent cancer risk: a Danish population-based cohort study. Blood 118:6515–6520Google Scholar
  105. 105.
    Rachidi S, Metelli A, Riesenberg B, Wu BX, Nelson MH, Wallace C, Paulos CM, Rubinstein MP, Garrett-Mayer E, Hennig M, Bearden DW, Yang Y, Liu B, Li Z (2017) Platelets subvert T cell immunity against cancer via GARP-TGFβ axis. Sci Immunol 2:eaai7911Google Scholar
  106. 106.
    Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72Google Scholar
  107. 107.
    Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, Métivier D, Larochette N, van Endert P, Ciccosanti F, Piacentini M, Zitvogel L, Kroemer G (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61Google Scholar
  108. 108.
    Chen X, Fosco D, Kline DE, Kline J (2017) Calreticulin promotes immunity and type I interferon-dependent survival in mice with acute myeloid leukemia. Oncoimmunology. 6:e1278332Google Scholar
  109. 109.
    Fucikova J, Truxova I, Hensler M, Becht E, Kasikova L, Moserova I, Vosahlikova S, Klouckova J, Church SE, Cremer I, Kepp O, Kroemer G, Galluzzi L, Salek C, Spisek R (2016) Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients. Blood 128:3113–3124PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of HematologyZealand University HospitalRoskildeDenmark
  2. 2.Center for Cancer Immune Therapy, Department of HematologyHerlev HospitalHerlevDenmark

Personalised recommendations