Skip to main content

Advertisement

Log in

Innate lymphoid cells in autoimmunity and chronic inflammatory diseases

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Abnormal activation of the innate immune system is a common feature of autoimmune and chronic inflammatory diseases. Since their identification as a separate family of leukocytes, innate lymphoid cells (ILCs) have emerged as important effector cells of the innate immune system. Alterations in ILC function and subtype distribution have been observed in a variety of immune-mediated diseases in humans and evidence from experimental models suggests a subtype specific role of ILCs in the pathophysiology of autoimmune inflammation. In this review, we discuss recent advances in the understanding of ILC biology in autoimmune and chronic inflammatory disorders, including multiple sclerosis, inflammatory bowel diseases, psoriasis, and rheumatic diseases, with a special focus on the potential of ILCs as therapeutic targets for the development of novel treatment strategies in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cho JH, Gregersen PK (2011) Genomics and the multifactorial nature of human autoimmune disease. N Engl J Med 365:1612–1623. https://doi.org/10.1056/NEJMra1100030

    Article  PubMed  CAS  Google Scholar 

  2. Park H, Bourla AB, Kastner DL, Colbert RA, Siegel RM (2012) Lighting the fires within: the cell biology of autoinflammatory diseases. Nat Rev Immunol 12:570–580. https://doi.org/10.1038/nri3261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517:293–301. https://doi.org/10.1038/nature14189

    Article  PubMed  CAS  Google Scholar 

  4. Eberl G, Colonna M, Di Santo JP, McKenzie AN (2015) Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science 348:aaa6566. https://doi.org/10.1126/science.aaa6566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE, Powrie F, Vivier E (2013) Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol 13:145–149. https://doi.org/10.1038/nri3365

    Article  PubMed  CAS  Google Scholar 

  6. Eberl G, Di Santo JP, Vivier E (2015) The brave new world of innate lymphoid cells. Nat Immunol 16:1–5. https://doi.org/10.1038/ni.3059

    Article  PubMed  CAS  Google Scholar 

  7. Mebius RE, Rennert P, Weissman IL (1997) Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7:493–504 https://doi.org/S1074-7613(00)80371-4

    Article  PubMed  CAS  Google Scholar 

  8. Spits H, Bernink JH, Lanier L (2016) NK cells and type 1 innate lymphoid cells: partners in host defense. Nat Immunol 17:758–764. https://doi.org/10.1038/ni.3482

    Article  PubMed  CAS  Google Scholar 

  9. Klose CSN, Flach M, Mohle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira D, Domingues RG, Veiga-Fernandes H, Arnold SJ, Busslinger M, Dunay IR, Tanriver Y, Diefenbach A (2014) Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157:340–356. https://doi.org/10.1016/j.cell.2014.03.030

    Article  PubMed  CAS  Google Scholar 

  10. Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, Cella M, Colonna M (2013) Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 38:769–781. https://doi.org/10.1016/j.immuni.2013.02.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Gasteiger G, Rudensky AY (2014) Interactions between innate and adaptive lymphocytes. Nat Rev Immunol 14:631–639. https://doi.org/10.1038/nri3726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Papp KA, Blauvelt A, Bukhalo M, Gooderham M, Krueger JG, Lacour JP, Menter A, Philipp S, Sofen H, Tyring S, Berner BR, Visvanathan S, Pamulapati C, Bennett N, Flack M, Scholl P, Padula SJ (2017) Risankizumab versus ustekinumab for moderate-to-severe plaque psoriasis. N Engl J Med 376:1551–1560. https://doi.org/10.1056/NEJMoa1607017

    Article  PubMed  CAS  Google Scholar 

  13. Blanco FJ, Moricke R, Dokoupilova E, Codding C, Neal J, Andersson M, Rohrer S, Richards H (2017) Secukinumab in active rheumatoid arthritis: a phase III randomized, double-blind, active comparator- and placebo-controlled study. Arthritis Rheumatol 69:1144–1153. https://doi.org/10.1002/art.40070

    Article  PubMed  CAS  Google Scholar 

  14. Baeten D, Baraliakos X, Braun J, Sieper J, Emery P, van der Heijde D, McInnes I, van Laar JM, Landewe R, Wordsworth P, Wollenhaupt J, Kellner H, Paramarta J, Wei J, Brachat A, Bek S, Laurent D, Li Y, Wang YA, Bertolino AP, Gsteiger S, Wright AM, Hueber W (2013) Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet 382:1705–1713. https://doi.org/10.1016/S0140-6736(13)61134-4

    Article  PubMed  CAS  Google Scholar 

  15. Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, Kunisawa J, Shibata N, Grunberg S, Sinha R, Zahm AM, Tardif MR, Sathaliyawala T, Kubota M, Farber DL, Collman RG, Shaked A, Fouser LA, Weiner DB, Tessier PA, Friedman JR, Kiyono H, Bushman FD, Chang KM, Artis D (2012) Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336:1321–1325. https://doi.org/10.1126/science.1222551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Papi A, Brightling C, Pedersen SE, Reddel HK (2017) Asthma. Lancet. https://doi.org/10.1016/S0140-6736(17)33311-1

    Book  Google Scholar 

  17. Gieseck RL 3rd, Wilson MS, Wynn TA (2017) Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol 18:62–76. https://doi.org/10.1038/nri.2017.90

    Article  PubMed  CAS  Google Scholar 

  18. Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, Fokkens WJ, Cupedo T, Spits H (2011) Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 12:1055–1062. https://doi.org/10.1038/ni.2104

    Article  PubMed  CAS  Google Scholar 

  19. Lim AI, Li Y, Lopez-Lastra S, Stadhouders R, Paul F, Casrouge A, Serafini N, Puel A, Bustamante J, Surace L, Masse-Ranson G, David E, Strick-Marchand H, Le Bourhis L, Cocchi R, Topazio D, Graziano P, Muscarella LA, Rogge L, Norel X, Sallenave JM, Allez M, Graf T, Hendriks RW, Casanova JL, Amit I, Yssel H, Di Santo JP (2017) Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168:1086–1100.e10. https://doi.org/10.1016/j.cell.2017.02.021

    Article  PubMed  CAS  Google Scholar 

  20. Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15:545–558. https://doi.org/10.1038/nri3871

    Article  PubMed  CAS  Google Scholar 

  21. Mair F, Becher B (2014) Thy1+ Sca1+ innate lymphoid cells infiltrate the CNS during autoimmune inflammation, but do not contribute to disease development. Eur J Immunol 44:37–45. https://doi.org/10.1002/eji.201343653

    Article  PubMed  CAS  Google Scholar 

  22. Hatfield JK, Brown MA (2015) Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE. Cell Immunol 297:69–79. https://doi.org/10.1016/j.cellimm.2015.06.006

    Article  PubMed  CAS  Google Scholar 

  23. Kwong B, Rua R, Gao Y, Flickinger J Jr, Wang Y, Kruhlak MJ, Zhu J, Vivier E, McGavern DB, Lazarevic V (2017) T-bet-dependent NKp46+ innate lymphoid cells regulate the onset of TH17-induced neuroinflammation. Nat Immunol 18:1117–1127. https://doi.org/10.1038/ni.3816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Russi AE, Walker-Caulfield ME, Ebel ME, Brown MA (2015) Cutting edge: c-kit signaling differentially regulates type 2 innate lymphoid cell accumulation and susceptibility to central nervous system demyelination in male and female SJL mice. J Immunol 194:5609–5613. https://doi.org/10.4049/jimmunol.1500068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jiang HR, Milovanovic M, Allan D, Niedbala W, Besnard AG, Fukada SY, Alves-Filho JC, Togbe D, Goodyear CS, Linington C, Xu D, Lukic ML, Liew FY (2012) IL-33 attenuates EAE by suppressing IL-17 and IFN-gamma production and inducing alternatively activated macrophages. Eur J Immunol 42:1804–1814. https://doi.org/10.1002/eji.201141947

    Article  PubMed  CAS  Google Scholar 

  26. Milovanovic M, Volarevic V, Ljujic B, Radosavljevic G, Jovanovic I, Arsenijevic N, Lukic ML (2012) Deletion of IL-33R (ST2) abrogates resistance to EAE in BALB/C mice by enhancing polarization of APC to inflammatory phenotype. PLoS One 7:e45225. https://doi.org/10.1371/journal.pone.0045225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gadani SP, Smirnov I, Smith AT, Overall CC, Kipnis J (2017) Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury. J Exp Med 214:285–296. https://doi.org/10.1084/jem.20161982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Perry JS, Han S, Xu Q, Herman ML, Kennedy LB, Csako G, Bielekova B (2012) Inhibition of LTi cell development by CD25 blockade is associated with decreased intrathecal inflammation in multiple sclerosis. Sci Transl Med 4:145ra106. https://doi.org/10.1126/scitranslmed.3004140

    Article  PubMed  CAS  Google Scholar 

  29. Gross CC, Schulte-Mecklenbeck A, Hanning U, Posevitz-Fejfar A, Korsukewitz C, Schwab N, Meuth SG, Wiendl H, Klotz L (2017) Distinct pattern of lesion distribution in multiple sclerosis is associated with different circulating T-helper and helper-like innate lymphoid cell subsets. Mult Scler 23:1025–1030. https://doi.org/10.1177/1352458516662726

    Article  PubMed  CAS  Google Scholar 

  30. Gross CC, Ahmetspahic D, Ruck T, Schulte-Mecklenbeck A, Schwarte K, Jorgens S, Scheu S, Windhagen S, Graefe B, Melzer N, Klotz L, Arolt V, Wiendl H, Meuth SG, Alferink J (2016) Alemtuzumab treatment alters circulating innate immune cells in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 3:e289. https://doi.org/10.1212/NXI.0000000000000289

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gillard GO, Saenz SA, Huss DJ, Fontenot JD (2016) Circulating innate lymphoid cells are unchanged in response to DAC HYP therapy. J Neuroimmunol 294:41–45. https://doi.org/10.1016/j.jneuroim.2016.03.008

    Article  PubMed  CAS  Google Scholar 

  32. Lin YC, Winokur P, Blake A, Wu T, Romm E, Bielekova B (2015) Daclizumab reverses intrathecal immune cell abnormalities in multiple sclerosis. Ann Clin Transl Neurol 2:445–455. https://doi.org/10.1002/acn3.181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Abraham C, Cho JH (2009) Inflammatory bowel disease. N Engl J Med 361:2066–2078. https://doi.org/10.1056/NEJMra0804647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Neurath MF (2014) Cytokines in inflammatory bowel disease. Nat Rev Immunol 14:329–342. https://doi.org/10.1038/nri3661

    Article  PubMed  CAS  Google Scholar 

  35. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA (2008) Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 29:947–957. https://doi.org/10.1016/j.immuni.2008.11.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, Mention JJ, Thiam K, Cerf-Bensussan N, Mandelboim O, Eberl G, Di Santo JP (2008) Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29:958–970. https://doi.org/10.1016/j.immuni.2008.11.001

    Article  PubMed  CAS  Google Scholar 

  37. Sanos SL, Bui VL, Mortha A, Oberle K, Heners C, Johner C, Diefenbach A (2009) RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 10:83–91. https://doi.org/10.1038/ni.1684

    Article  PubMed  CAS  Google Scholar 

  38. Luci C, Reynders A, Ivanov II, Cognet C, Chiche L, Chasson L, Hardwigsen J, Anguiano E, Banchereau J, Chaussabel D, Dalod M, Littman DR, Vivier E, Tomasello E (2009) Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat Immunol 10:75–82. https://doi.org/10.1038/ni.1681

    Article  PubMed  CAS  Google Scholar 

  39. Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JK, Doherty JM, Mills JC, Colonna M (2009) A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457:722–725. https://doi.org/10.1038/nature07537

    Article  PubMed  CAS  Google Scholar 

  40. Sawa S, Lochner M, Satoh-Takayama N, Dulauroy S, Berard M, Kleinschek M, Cua D, Di Santo JP, Eberl G (2011) RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol 12:320–326. https://doi.org/10.1038/ni.2002

    Article  PubMed  CAS  Google Scholar 

  41. Vonarbourg C, Mortha A, Bui VL, Hernandez PP, Kiss EA, Hoyler T, Flach M, Bengsch B, Thimme R, Holscher C, Honig M, Pannicke U, Schwarz K, Ware CF, Finke D, Diefenbach A (2010) Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity 33:736–751. https://doi.org/10.1016/j.immuni.2010.10.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ, Powrie F (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464:1371–1375. https://doi.org/10.1038/nature08949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Pearson C, Thornton EE, McKenzie B, Schaupp AL, Huskens N, Griseri T, West N, Tung S, Seddon BP, Uhlig HH, Powrie F (2016) ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation. elife 5:e10066. https://doi.org/10.7554/eLife.10066

    Article  PubMed  PubMed Central  Google Scholar 

  44. Powell N, Walker AW, Stolarczyk E, Canavan JB, Gokmen MR, Marks E, Jackson I, Hashim A, Curtis MA, Jenner RG, Howard JK, Parkhill J, MacDonald TT, Lord GM (2012) The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 37:674–684. https://doi.org/10.1016/j.immuni.2012.09.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Monticelli LA, Osborne LC, Noti M, Tran SV, Zaiss DM, Artis D (2015) IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc Natl Acad Sci U S A 112:10762–10767. https://doi.org/10.1073/pnas.1509070112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Rankin LC, Girard-Madoux MJ, Seillet C, Mielke LA, Kerdiles Y, Fenis A, Wieduwild E, Putoczki T, Mondot S, Lantz O, Demon D, Papenfuss AT, Smyth GK, Lamkanfi M, Carotta S, Renauld JC, Shi W, Carpentier S, Soos T, Arendt C, Ugolini S, Huntington ND, Belz GT, Vivier E (2016) Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nat Immunol 17:179–186. https://doi.org/10.1038/ni.3332

    Article  PubMed  CAS  Google Scholar 

  47. Vely F, Barlogis V, Vallentin B, Neven B, Piperoglou C, Ebbo M, Perchet T, Petit M, Yessaad N, Touzot F, Bruneau J, Mahlaoui N, Zucchini N, Farnarier C, Michel G, Moshous D, Blanche S, Dujardin A, Spits H, Distler JH, Ramming A, Picard C, Golub R, Fischer A, Vivier E (2016) Evidence of innate lymphoid cell redundancy in humans. Nat Immunol 17:1291–1299. https://doi.org/10.1038/ni.3553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Takayama T, Kamada N, Chinen H, Okamoto S, Kitazume MT, Chang J, Matuzaki Y, Suzuki S, Sugita A, Koganei K, Hisamatsu T, Kanai T, Hibi T (2010) Imbalance of NKp44(+)NKp46(−) and NKp44(−)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn’s disease. Gastroenterology 139:882–892, 892 e881–883. https://doi.org/10.1053/j.gastro.2010.05.040

    Article  PubMed  CAS  Google Scholar 

  49. Bernink JH, Peters CP, Munneke M, te Velde AA, Meijer SL, Weijer K, Hreggvidsdottir HS, Heinsbroek SE, Legrand N, Buskens CJ, Bemelman WA, Mjosberg JM, Spits H (2013) Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol 14:221–229. https://doi.org/10.1038/ni.2534

    Article  PubMed  CAS  Google Scholar 

  50. Bernink JH, Krabbendam L, Germar K, de Jong E, Gronke K, Kofoed-Nielsen M, Munneke JM, Hazenberg MD, Villaudy J, Buskens CJ, Bemelman WA, Diefenbach A, Blom B, Spits H (2015) Interleukin-12 and -23 control plasticity of CD127(+) group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43:146–160. https://doi.org/10.1016/j.immuni.2015.06.019

    Article  PubMed  CAS  Google Scholar 

  51. Geremia A, Arancibia-Carcamo CV, Fleming MP, Rust N, Singh B, Mortensen NJ, Travis SP, Powrie F (2011) IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med 208:1127–1133. https://doi.org/10.1084/jem.20101712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Longman RS, Diehl GE, Victorio DA, Huh JR, Galan C, Miraldi ER, Swaminath A, Bonneau R, Scherl EJ, Littman DR (2014) CX(3)CR1(+) mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med 211:1571–1583. https://doi.org/10.1084/jem.20140678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Powell N, Lo JW, Biancheri P, Vossenkamper A, Pantazi E, Walker AW, Stolarczyk E, Ammoscato F, Goldberg R, Scott P, Canavan JB, Perucha E, Garrido-Mesa N, Irving PM, Sanderson JD, Hayee B, Howard JK, Parkhill J, MacDonald TT, Lord GM (2015) Interleukin 6 increases production of cytokines by colonic innate lymphoid cells in mice and patients with chronic intestinal inflammation. Gastroenterology 149:456–467e415. https://doi.org/10.1053/j.gastro.2015.04.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ohne Y, Silver JS, Thompson-Snipes L, Collet MA, Blanck JP, Cantarel BL, Copenhaver AM, Humbles AA, Liu YJ (2016) IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat Immunol 17:646–655. https://doi.org/10.1038/ni.3447

    Article  PubMed  CAS  Google Scholar 

  55. Lim AI, Menegatti S, Bustamante J, Le Bourhis L, Allez M, Rogge L, Casanova JL, Yssel H, Di Santo JP (2016) IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J Exp Med 213:569–583. https://doi.org/10.1084/jem.20151750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Silver JS, Kearley J, Copenhaver AM, Sanden C, Mori M, Yu L, Pritchard GH, Berlin AA, Hunter CA, Bowler R, Erjefalt JS, Kolbeck R, Humbles AA (2016) Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat Immunol 17:626–635. https://doi.org/10.1038/ni.3443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Alwan W, Nestle FO (2015) Pathogenesis and treatment of psoriasis: exploiting pathophysiological pathways for precision medicine. Clin Exp Rheumatol 33:S2–S6

    PubMed  Google Scholar 

  58. Hawkes JE, Chan TC, Krueger JG (2017) Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol 140:645–653. https://doi.org/10.1016/j.jaci.2017.07.004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Pantelyushin S, Haak S, Ingold B, Kulig P, Heppner FL, Navarini AA, Becher B (2012) Rorgammat+ innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice. J Clin Invest 122:2252–2256. https://doi.org/10.1172/JCI61862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Villanova F, Flutter B, Tosi I, Grys K, Sreeneebus H, Perera GK, Chapman A, Smith CH, Di Meglio P, Nestle FO (2014) Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J Invest Dermatol 134:984–991. https://doi.org/10.1038/jid.2013.477

    Article  PubMed  CAS  Google Scholar 

  61. Teunissen MBM, Munneke JM, Bernink JH, Spuls PI, Res PCM, Te Velde A, Cheuk S, Brouwer MWD, Menting SP, Eidsmo L, Spits H, Hazenberg MD, Mjosberg J (2014) Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J Invest Dermatol 134:2351–2360. https://doi.org/10.1038/jid.2014.146

    Article  PubMed  CAS  Google Scholar 

  62. Bruggen MC, Bauer WM, Reininger B, Clim E, Captarencu C, Steiner GE, Brunner PM, Meier B, French LE, Stingl G (2016) In situ mapping of innate lymphoid cells in human skin: evidence for remarkable differences between normal and inflamed skin. J Invest Dermatol 136:2396–2405. https://doi.org/10.1016/j.jid.2016.07.017

    Article  PubMed  CAS  Google Scholar 

  63. Dyring-Andersen B, Geisler C, Agerbeck C, Lauritsen JP, Gudjonsdottir SD, Skov L, Bonefeld CM (2014) Increased number and frequency of group 3 innate lymphoid cells in nonlesional psoriatic skin. Br J Dermatol 170:609–616. https://doi.org/10.1111/bjd.12658

    Article  PubMed  CAS  Google Scholar 

  64. Mora-Velandia LM, Castro-Escamilla O, Mendez AG, Aguilar-Flores C, Velazquez-Avila M, Tussie-Luna MI, Tellez-Sosa J, Maldonado-Garcia C, Jurado-Santacruz F, Ferat-Osorio E, Martinez-Barnetche J, Pelayo R, Bonifaz LC (2017) A human Lin− CD123+ CD127low population endowed with ILC features and migratory capabilities contributes to immunopathological hallmarks of psoriasis. Front Immunol 8:176. https://doi.org/10.3389/fimmu.2017.00176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Rak GD, Osborne LC, Siracusa MC, Kim BS, Wang K, Bayat A, Artis D, Volk SW (2016) IL-33-dependent group 2 innate lymphoid cells promote cutaneous wound healing. J Invest Dermatol 136:487–496. https://doi.org/10.1038/JID.2015.406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Sieper J, Poddubnyy D (2017) Axial spondyloarthritis. Lancet 390:73–84. https://doi.org/10.1016/S0140-6736(16)31591-4

    Article  PubMed  Google Scholar 

  67. Cuthbert RJ, Fragkakis EM, Dunsmuir R, Li Z, Coles M, Marzo-Ortega H, Giannoudis PV, Jones E, El-Sherbiny YM, McGonagle D (2017) Brief report: group 3 innate lymphoid cells in human enthesis. Arthritis Rheumatol 69:1816–1822. https://doi.org/10.1002/art.40150

    Article  PubMed  CAS  Google Scholar 

  68. Ciccia F, Guggino G, Rizzo A, Saieva L, Peralta S, Giardina A, Cannizzaro A, Sireci G, De Leo G, Alessandro R, Triolo G (2015) Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann Rheum Dis 74:1739–1747. https://doi.org/10.1136/annrheumdis-2014-206323

    Article  PubMed  CAS  Google Scholar 

  69. Leijten EF, van Kempen TS, Boes M, Michels-van Amelsfort JM, Hijnen D, Hartgring SA, van Roon JA, Wenink MH, Radstake TR (2015) Brief report: enrichment of activated group 3 innate lymphoid cells in psoriatic arthritis synovial fluid. Arthritis Rheumatol 67:2673–2678. https://doi.org/10.1002/art.39261

    Article  PubMed  Google Scholar 

  70. Triggianese P, Conigliaro P, Chimenti MS, Biancone L, Monteleone G, Perricone R, Monteleone I (2016) Evidence of IL-17 producing innate lymphoid cells in peripheral blood from patients with enteropathic spondyloarthritis. Clin Exp Rheumatol 34:1085–1093

    PubMed  Google Scholar 

  71. Malmstrom V, Catrina AI, Klareskog L (2017) The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting. Nat Rev Immunol 17:60–75. https://doi.org/10.1038/nri.2016.124

    Article  PubMed  CAS  Google Scholar 

  72. Rodriguez-Carrio J, Hahnlein JS, Ramwadhdoebe TH, Semmelink JF, Choi IY, van Lienden KP, Maas M, Gerlag DM, Tak PP, Geijtenbeek TB, van Baarsen LG (2017) Brief report: altered innate lymphoid cell subsets in human lymph node biopsy specimens obtained during the at-risk and earliest phases of rheumatoid arthritis. Arthritis Rheumatol 69:70–76. https://doi.org/10.1002/art.39811

    Article  PubMed  CAS  Google Scholar 

  73. Ren J, Feng Z, Lv Z, Chen X, Li J (2011) Natural killer-22 cells in the synovial fluid of patients with rheumatoid arthritis are an innate source of interleukin 22 and tumor necrosis factor-alpha. J Rheumatol 38:2112–2118. https://doi.org/10.3899/jrheum.101377

    Article  PubMed  CAS  Google Scholar 

  74. Koo J, Kim S, Jung WJ, Lee YE, Song GG, Kim KS, Kim MY (2013) Increased lymphocyte infiltration in rheumatoid arthritis is correlated with an increase in LTi-like cells in synovial fluid. Immune Netw 13:240–248. https://doi.org/10.4110/in.2013.13.6.240

    Article  PubMed  PubMed Central  Google Scholar 

  75. Pineda MA, Rodgers DT, Al-Riyami L, Harnett W, Harnett MM (2014) ES-62 protects against collagen-induced arthritis by resetting interleukin-22 toward resolution of inflammation in the joints. Arthritis Rheumatol 66:1492–1503. https://doi.org/10.1002/art.38392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Rauber S, Luber M, Weber S, Maul L, Soare A, Wohlfahrt T, Lin NY, Dietel K, Bozec A, Herrmann M, Kaplan MH, Weigmann B, Zaiss MM, Fearon U, Veale DJ, Canete JD, Distler O, Rivellese F, Pitzalis C, Neurath MF, McKenzie ANJ, Wirtz S, Schett G, Distler JHW, Ramming A (2017) Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells. Nat Med 23:938–944. https://doi.org/10.1038/nm.4373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Turner JE, Morrison PJ, Wilhelm C, Wilson M, Ahlfors H, Renauld JC, Panzer U, Helmby H, Stockinger B (2013) IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J Exp Med 210:2951–2965. https://doi.org/10.1084/jem.20130071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Biton J, Khaleghparast Athari S, Thiolat A, Santinon F, Lemeiter D, Herve R, Delavallee L, Levescot A, Roga S, Decker P, Girard JP, Herbelin A, Boissier MC, Bessis N (2016) In vivo expansion of activated Foxp3+ regulatory T cells and establishment of a type 2 immune response upon IL-33 treatment protect against experimental arthritis. J Immunol 197:1708–1719. https://doi.org/10.4049/jimmunol.1502124

    Article  PubMed  CAS  Google Scholar 

  79. Braudeau C, Amouriaux K, Neel A, Herbreteau G, Salabert N, Rimbert M, Martin JC, Hemont C, Hamidou M, Josien R (2016) Persistent deficiency of circulating mucosal-associated invariant T (MAIT) cells in ANCA-associated vasculitis. J Autoimmun 70:73–79. https://doi.org/10.1016/j.jaut.2016.03.015

    Article  PubMed  CAS  Google Scholar 

  80. Fazekas B, Moreno-Olivera A, Kelly Y, O'Hara P, Murray S, Kennedy A, Conlon N, Scott J, Melo AM, Hickey FB, Dooley D, O'Brien EC, Moran S, Doherty DG, Little MA (2017) Alterations in circulating lymphoid cell populations in systemic small vessel vasculitis are non-specific manifestations of renal injury. Clin Exp Immunol 191:180–188. https://doi.org/10.1111/cei.13058

    Article  PubMed  CAS  Google Scholar 

  81. Asano Y (2017) Systemic sclerosis. J Dermatol 45:128–138. https://doi.org/10.1111/1346-8138.14153

    Article  PubMed  Google Scholar 

  82. Roan F, Stoklasek TA, Whalen E, Molitor JA, Bluestone JA, Buckner JH, Ziegler SF (2016) CD4+ group 1 innate lymphoid cells (ILC) form a functionally distinct ILC subset that is increased in systemic sclerosis. J Immunol 196:2051–2062. https://doi.org/10.4049/jimmunol.1501491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wohlfahrt T, Usherenko S, Englbrecht M, Dees C, Weber S, Beyer C, Gelse K, Distler O, Schett G, Distler JH, Ramming A (2016) Type 2 innate lymphoid cell counts are increased in patients with systemic sclerosis and correlate with the extent of fibrosis. Ann Rheum Dis 75:623–626. https://doi.org/10.1136/annrheumdis-2015-207388

    Article  PubMed  CAS  Google Scholar 

  84. McHedlidze T, Waldner M, Zopf S, Walker J, Rankin AL, Schuchmann M, Voehringer D, McKenzie AN, Neurath MF, Pflanz S, Wirtz S (2013) Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39:357–371. https://doi.org/10.1016/j.immuni.2013.07.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Hams E, Armstrong ME, Barlow JL, Saunders SP, Schwartz C, Cooke G, Fahy RJ, Crotty TB, Hirani N, Flynn RJ, Voehringer D, McKenzie AN, Donnelly SC, Fallon PG (2014) IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc Natl Acad Sci U S A 111:367–372. https://doi.org/10.1073/pnas.1315854111

    Article  PubMed  CAS  Google Scholar 

  86. Gaffen SL, Jain R, Garg AV, Cua DJ (2014) The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol 14:585–600. https://doi.org/10.1038/nri3707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Riedel JH, Becker M, Kopp K, Duster M, Brix SR, Meyer-Schwesinger C, Kluth LA, Gnirck AC, Attar M, Krohn S, Fehse B, Stahl RAK, Panzer U, Turner JE (2017) IL-33-mediated expansion of type 2 innate lymphoid cells protects from progressive glomerulosclerosis. J Am Soc Nephrol 28:2068–2080. https://doi.org/10.1681/ASN.2016080877

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kiss EA, Diefenbach A (2012) Role of the aryl hydrocarbon receptor in controlling maintenance and functional programs of RORgammat(+) innate lymphoid cells and intraepithelial lymphocytes. Front Immunol 3:124. https://doi.org/10.3389/fimmu.2012.00124

    Article  PubMed  PubMed Central  Google Scholar 

  89. Spencer SP, Wilhelm C, Yang Q, Hall JA, Bouladoux N, Boyd A, Nutman TB, Urban JF Jr, Wang J, Ramalingam TR, Bhandoola A, Wynn TA, Belkaid Y (2014) Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343:432–437. https://doi.org/10.1126/science.1247606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Martina Becker for the excellent help with preparing the figures.

Funding

J.-E.T. is supported by an Emmy Noether Grant of the Deutsche Forschungsgemeinschaft (TU316/1-2) and by the Collaborative Research Center 1192 “Immune-Mediated Glomerular Diseases” funded by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Eric Turner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is a contribution to the special issue on Innate Lymphoid Cells in Inflammation and Immunity - Guest Editors: Jan-Eric Turner and Georg Gasteiger

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, T., Turner, JE. Innate lymphoid cells in autoimmunity and chronic inflammatory diseases. Semin Immunopathol 40, 393–406 (2018). https://doi.org/10.1007/s00281-018-0670-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-018-0670-4

Keywords

Navigation