Advertisement

Seminars in Immunopathology

, Volume 39, Issue 6, pp 593–604 | Cite as

Tissue compartmentalization of T cell responses during early life

  • Kyra D. Zens
  • Thomas Connors
  • Donna L. Farber
Review

Abstract

The immune system in early life is tasked with transitioning from a relatively protected environment to one in which it encounters a wide variety of innocuous antigens and dangerous pathogens. The immaturity of the developing immune system, and particularly the distinct functionality of T lymphocytes in early life, has been implicated in increased susceptibility to infection. Previous work has demonstrated that immune responses in early life are skewed toward limited inflammation and atopy; however, there is mounting evidence that such responses are context- and tissue-dependent. The regulation, differentiation, and maintenance of infant T cell responses, particularly as it relates to tissue compartmentalization, remains poorly understood. How the tissue environment impacts early-life immune responses and whether the development of localized protective immune memory cell subsets are established is an emerging area of research. As infectious diseases affecting the respiratory and digestive tracts are a leading cause of morbidity and mortality worldwide in infants and young children, a deeper understanding of site-specific immunity is essential to addressing these challenges. Here, we review the current paradigms of T cell responses during infancy as they relate to tissue localization and discuss implications for the development of vaccines and therapeutics.

Keywords

Infants T cells Lymphocytes Lymphoid tissue Mucosal sites Infection 

References

  1. 1.
    Kollmann TR, Kampmann B, Mazmanian SK, Marchant A, Levy O (2017) Protecting the newborn and young infant from infectious diseases: lessons from immune ontogeny. Immunity 46(3):350–363. doi: 10.1016/j.immuni.2017.03.009 CrossRefPubMedGoogle Scholar
  2. 2.
    Relan M, Lehman HK (2014) Common dermatologic manifestations of primary immune deficiencies. Curr Allergy Asthma Rep 14(12):480. doi: 10.1007/s11882-014-0480-2 CrossRefPubMedGoogle Scholar
  3. 3.
    Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 28:445–489. doi: 10.1146/annurev-immunol-030409-101212 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Crotty S (2011) Follicular helper CD4 T cells (TFH). Annu Rev Immunol 29:621–663. doi: 10.1146/annurev-immunol-031210-101400 CrossRefPubMedGoogle Scholar
  5. 5.
    Harty JT, Tvinnereim AR, White DW (2000) CD8+ T cell effector mechanisms in resistance to infection. Annu Rev Immunol 18:275–308. doi: 10.1146/annurev.immunol.18.1.275 CrossRefPubMedGoogle Scholar
  6. 6.
    Teijaro JR, Turner D, Pham Q, Wherry EJ, Lefrancois L, Farber DL (2011) Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J Immunol 187(11):5510–5514. doi: 10.4049/jimmunol.1102243 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Turner DL, Bickham KL, Thome JJ, Kim CY, D'Ovidio F, Wherry EJ, Farber DL (2014) Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal Immunol 7(3):501–510. doi: 10.1038/mi.2013.67 CrossRefPubMedGoogle Scholar
  8. 8.
    Jozwik A, Habibi MS, Paras A, Zhu J, Guvenel A, Dhariwal J, Almond M, Wong EH, Sykes A, Maybeno M, Del Rosario J, Trujillo-Torralbo MB, Mallia P, Sidney J, Peters B, Kon OM, Sette A, Johnston SL, Openshaw PJ, Chiu C (2015) RSV-specific airway resident memory CD8+ T cells and differential disease severity after experimental human infection. Nat Commun 6:10224. doi: 10.1038/ncomms10224 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR (2009) Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 10(5):524–530. doi: 10.1038/ni.1718 CrossRefPubMedGoogle Scholar
  10. 10.
    Masopust D, Choo D, Vezys V, Wherry EJ, Duraiswamy J, Akondy R, Wang J, Casey KA, Barber DL, Kawamura KS, Fraser KA, Webby RJ, Brinkmann V, Butcher EC, Newell KA, Ahmed R (2010) Dynamic T cell migration program provides resident memory within intestinal epithelium. J Exp Med 207(3):553–564. doi: 10.1084/jem.20090858 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wakim LM, Woodward-Davis A, Liu R, Hu Y, Villadangos J, Smyth G, Bevan MJ (2012) The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J Immunol 189(7):3462–3471. doi: 10.4049/jimmunol.1201305 CrossRefPubMedGoogle Scholar
  12. 12.
    Shin H, Iwasaki A (2012) A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491(7424):463–467. doi: 10.1038/nature11522 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Thome JJC, Yudanin NA, Ohmura Y, Kubota M, Grinshpun B, Sathaliyawala T, Kato T, Lerner H, Shen Y, Farber DL (2014) Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159:814–828CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gibbons D, Fleming P, Virasami A, Michel ML, Sebire NJ, Costeloe K, Carr R, Klein N, Hayday A (2014) Interleukin-8 (CXCL8) production is a signatory T cell effector function of human newborn infants. Nat Med 20(10):1206–1210. doi: 10.1038/nm.3670 CrossRefPubMedGoogle Scholar
  15. 15.
    Lawn JE, Blencowe H, Oza S, You D, Lee AC, Waiswa P, Lalli M, Bhutta Z, Barros AJ, Christian P, Mathers C, Cousens SN, Lancet Every Newborn Study G (2014) Every newborn: progress, priorities, and potential beyond survival. Lancet 384(9938):189–205. doi: 10.1016/S0140-6736(14)60496-7 CrossRefPubMedGoogle Scholar
  16. 16.
    Global Burden of Disease Pediatrics C, Kyu HH, Pinho C, Wagner JA, Brown JC, Bertozzi-Villa A, Charlson FJ, Coffeng LE, Dandona L, Erskine HE, Ferrari AJ, Fitzmaurice C, Fleming TD, Forouzanfar MH, Graetz N, Guinovart C, Haagsma J, Higashi H, Kassebaum NJ, Larson HJ, Lim SS, Mokdad AH, Moradi-Lakeh M, Odell SV, Roth GA, Serina PT, Stanaway JD, Misganaw A, Whiteford HA, Wolock TM, Wulf Hanson S, Abd-Allah F, Abera SF, Abu-Raddad LJ, AlBuhairan FS, Amare AT, Antonio CA, Artaman A, Barker-Collo SL, Barrero LH, Benjet C, Bensenor IM, Bhutta ZA, Bikbov B, Brazinova A, Campos-Nonato I, Castaneda-Orjuela CA, Catala-Lopez F, Chowdhury R, Cooper C, Crump JA, Dandona R, Degenhardt L, Dellavalle RP, Dharmaratne SD, Faraon EJ, Feigin VL, Furst T, Geleijnse JM, Gessner BD, Gibney KB, Goto A, Gunnell D, Hankey GJ, Hay RJ, Hornberger JC, Hosgood HD, Hu G, Jacobsen KH, Jayaraman SP, Jeemon P, Jonas JB, Karch A, Kim D, Kim S, Kokubo Y, Kuate Defo B, Kucuk Bicer B, Kumar GA, Larsson A, Leasher JL, Leung R, Li Y, Lipshultz SE, Lopez AD, Lotufo PA, Lunevicius R, Lyons RA, Majdan M, Malekzadeh R, Mashal T, Mason-Jones AJ, Melaku YA, Memish ZA, Mendoza W, Miller TR, Mock CN, Murray J, Nolte S, Oh IH, Olusanya BO, Ortblad KF, Park EK, Paternina Caicedo AJ, Patten SB, Patton GC, Pereira DM, Perico N, Piel FB, Polinder S, Popova S, Pourmalek F, Quistberg DA, Remuzzi G, Rodriguez A, Rojas-Rueda D, Rothenbacher D, Rothstein DH, Sanabria J, Santos IS, Schwebel DC, Sepanlou SG, Shaheen A, Shiri R, Shiue I, Skirbekk V, Sliwa K, Sreeramareddy CT, Stein DJ, Steiner TJ, Stovner LJ, Sykes BL, Tabb KM, Terkawi AS, Thomson AJ, Thorne-Lyman AL, Towbin JA, Ukwaja KN, Vasankari T, Venketasubramanian N, Vlassov VV, Vollset SE, Weiderpass E, Weintraub RG, Werdecker A, Wilkinson JD, Woldeyohannes SM, Wolfe CD, Yano Y, Yip P, Yonemoto N, Yoon SJ, Younis MZ, Yu C, El Sayed Zaki M, Naghavi M, Murray CJ, Vos T (2016) Global and national burden of diseases and injuries among children and adolescents between 1990 and 2013: findings from the global burden of disease 2013 study. JAMA Pediatr 170 (3):267–287. doi:10.1001/jamapediatrics.2015.4276Google Scholar
  17. 17.
    Randolph AG, McCulloh RJ (2014) Pediatric sepsis: important considerations for diagnosing and managing severe infections in infants, children, and adolescents. Virulence 5(1):179–189. doi: 10.4161/viru.27045 CrossRefPubMedGoogle Scholar
  18. 18.
    Glezen WP, Taber LH, Frank AL, Kasel JA (1986) Risk of primary infection and reinfection with respiratory syncytial virus. Am J Dis Child 140(6):543–546PubMedGoogle Scholar
  19. 19.
    Jain S, Finelli L, Team CES (2015) Community-acquired pneumonia among U.S. children. N Engl J Med 372(22):2167–2168. doi: 10.1056/NEJMc1504028 PubMedGoogle Scholar
  20. 20.
    Meissner HC (2016) Viral bronchiolitis in children. N Engl J Med 374(1):62–72. doi: 10.1056/NEJMra1413456 CrossRefPubMedGoogle Scholar
  21. 21.
    Geoghegan S, Erviti A, Caballero MT, Vallone F, Zanone SM, Losada JV, Bianchi A, Acosta PL, Talarico LB, Ferretti A, Grimaldi LA, Sancilio A, Duenas K, Sastre G, Rodriguez A, Ferrero F, Barboza E, Gago GF, Nocito C, Flamenco E, Perez AR, Rebec B, Ferolla FM, Libster R, Karron RA, Bergel E, Polack FP (2017) Mortality due to respiratory syncytial virus. Burden and risk factors. Am J Respir Crit Care Med 195(1):96–103. doi: 10.1164/rccm.201603-0658OC CrossRefPubMedGoogle Scholar
  22. 22.
    American Academy of Pediatrics Subcommittee on D, Management of B (2006) Diagnosis and management of bronchiolitis. Pediatrics 118(4):1774–1793. doi: 10.1542/peds.2006-2223 CrossRefGoogle Scholar
  23. 23.
    Mazur N, Martinon-Torres F, Baraldi E, Fauroux B, Greenough A, Heikkinen T, Manzoni P, Mejias A, Nair H, Papadopoulos NG, Polack FP, Ramilo O, Sharland M, Stein R, Madhi SA, Bont L, Syncytial CR (2015) Lower respiratory tract infection caused by respiratory syncytial virus: current management and new therapeutics. Lancet Resp Med 3(11):888–900. doi: 10.1016/S2213-2600(15)00255-6 CrossRefGoogle Scholar
  24. 24.
    American Academy of Pediatrics Committee on Infectious D, American Academy of Pediatrics Bronchiolitis Guidelines C (2014) Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics 134(2):415–420. doi: 10.1542/peds.2014-1665 CrossRefGoogle Scholar
  25. 25.
    Hall CB, Weinberg GA, Iwane MK, Blumkin AK, Edwards KM, Staat MA, Auinger P, Griffin MR, Poehling KA, Erdman D, Grijalva CG, Zhu Y, Szilagyi P (2009) The burden of respiratory syncytial virus infection in young children. N Engl J Med 360(6):588–598. doi: 10.1056/NEJMoa0804877 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Stockman LJ, Curns AT, Anderson LJ, Fischer-Langley G (2012) Respiratory syncytial virus-associated hospitalizations among infants and young children in the United States, 1997-2006. Pediatr Infect Dis J 31(1):5–9. doi: 10.1097/INF.0b013e31822e68e6 CrossRefPubMedGoogle Scholar
  27. 27.
    Walker CL, Rudan I, Liu L, Nair H, Theodoratou E, Bhutta ZA, O'Brien KL, Campbell H, Black RE (2013) Global burden of childhood pneumonia and diarrhoea. Lancet 381(9875):1405–1416. doi: 10.1016/S0140-6736(13)60222-6 CrossRefPubMedGoogle Scholar
  28. 28.
    Guerrant RL, Oria RB, Moore SR, Oria MO, Lima AA (2008) Malnutrition as an enteric infectious disease with long-term effects on child development. Nutr Rev 66(9):487–505. doi: 10.1111/j.1753-4887.2008.00082.x CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Alam NH, Ashraf H (2003) Treatment of infectious diarrhea in children. Paediatr Drugs 5(3):151–165CrossRefPubMedGoogle Scholar
  30. 30.
    Garcia AM, Fadel SA, Cao S, Sarzotti M (2000) T cell immunity in neonates. Immunol Res 22(2–3):177–190. doi: 10.1385/IR:22:2-3:177 CrossRefPubMedGoogle Scholar
  31. 31.
    Le Campion A, Bourgeois C, Lambolez F, Martin B, Leaument S, Dautigny N, Tanchot C, Penit C, Lucas B (2002) Naive T cells proliferate strongly in neonatal mice in response to self-peptide/self-MHC complexes. Proc Natl Acad Sci U S A 99(7):4538–4543. doi: 10.1073/pnas.062621699 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Thome JJ, Bickham KL, Ohmura Y, Kubota M, Matsuoka N, Gordon C, Granot T, Griesemer A, Lerner H, Kato T, Farber DL (2016) Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat Med 22(1):72–77. doi: 10.1038/nm.4008 CrossRefPubMedGoogle Scholar
  33. 33.
    Junge S, Kloeckener-Gruissem B, Zufferey R, Keisker A, Salgo B, Fauchere JC, Scherer F, Shalaby T, Grotzer M, Siler U, Seger R, Gungor T (2007) Correlation between recent thymic emigrants and CD31+ (PECAM-1) CD4+ T cells in normal individuals during aging and in lymphopenic children. Eur J Immunol 37(11):3270–3280. doi: 10.1002/eji.200636976 CrossRefPubMedGoogle Scholar
  34. 34.
    Torow N, Yu K, Hassani K, Freitag J, Schulz O, Basic M, Brennecke A, Sparwasser T, Wagner N, Bleich A, Lochner M, Weiss S, Forster R, Pabst O, Hornef MW (2015) Active suppression of intestinal CD4(+)TCRalphabeta(+) T-lymphocyte maturation during the postnatal period. Nat Commun 6:7725. doi: 10.1038/ncomms8725 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ruckwardt TJ, Malloy AM, Morabito KM, Graham BS (2014) Quantitative and qualitative deficits in neonatal lung-migratory dendritic cells impact the generation of the CD8+ T cell response. PLoS Pathog 10(2):e1003934. doi: 10.1371/journal.ppat.1003934 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sun CM, Fiette L, Tanguy M, Leclerc C, Lo-Man R (2003) Ontogeny and innate properties of neonatal dendritic cells. Blood 102(2):585–591. doi: 10.1182/blood-2002-09-2966 CrossRefPubMedGoogle Scholar
  37. 37.
    Granot T, Senda T, Carpenter DJ, Matsuoka N, Weiner J, Gordon CL, Miron M, Kumar BV, Griesemer A, Ho SH, Lerner H, Thome JJ, Connors T, Reizis B, Farber DL (2017) Dendritic cells display subset and tissue-specific maturation dynamics over human life. Immunity 46(3):504–515. doi: 10.1016/j.immuni.2017.02.019 CrossRefPubMedGoogle Scholar
  38. 38.
    Hunt DW, Huppertz HI, Jiang HJ, Petty RE (1994) Studies of human cord blood dendritic cells: evidence for functional immaturity. Blood 84(12):4333–4343PubMedGoogle Scholar
  39. 39.
    Petty RE, Hunt DW (1998) Neonatal dendritic cells. Vaccine 16(14–15):1378–1382CrossRefPubMedGoogle Scholar
  40. 40.
    Langrish CL, Buddle JC, Thrasher AJ, Goldblatt D (2002) Neonatal dendritic cells are intrinsically biased against Th-1 immune responses. Clin Exp Immunol 128(1):118–123CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rangel-Moreno J, Carragher DM, de la Luz G-HM, Hwang JY, Kusser K, Hartson L, Kolls JK, Khader SA, Randall TD (2011) The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat Immunol 12(7):639–646. doi: 10.1038/ni.2053 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mora JR, Bono MR, Manjunath N, Weninger W, Cavanagh LL, Rosemblatt M, Von Andrian UH (2003) Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 424(6944):88–93CrossRefPubMedGoogle Scholar
  43. 43.
    Crespo M, Martinez DG, Cerissi A, Rivera-Reyes B, Bernstein HB, Lederman MM, Sieg SF, Luciano AA (2012) Neonatal T-cell maturation and homing receptor responses to toll-like receptor ligands differ from those of adult naive T cells: relationship to prematurity. Pediatr Res 71(2):136–143. doi: 10.1038/pr.2011.26 CrossRefPubMedGoogle Scholar
  44. 44.
    You D, Ripple M, Balakrishna S, Troxclair D, Sandquist D, Ding L, Ahlert TA, Cormier SA (2008) Inchoate CD8+ T cell responses in neonatal mice permit influenza-induced persistent pulmonary dysfunction. J Immunol 181(5):3486–3494CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lines JL, Hoskins S, Hollifield M, Cauley LS, Garvy BA (2010) The migration of T cells in response to influenza virus is altered in neonatal mice. J Immunol 185(5):2980–2988. doi: 10.4049/jimmunol.0903075 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Connors TJ, Ravindranath TM, Bickham KL, Gordon CL, Zhang F, Levin B, Baird JS, Farber DL (2016) Airway CD8(+) T cells are associated with lung injury during infant viral respiratory tract infection. Am J Respir Cell Mol Biol 54(6):822–830. doi: 10.1165/rcmb.2015-0297OC CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Culley FJ, Pollott J, Openshaw PJ (2002) Age at first viral infection determines the pattern of T cell-mediated disease during reinfection in adulthood. J Exp Med 196(10):1381–1386CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Dakhama A, Park JW, Taube C, Joetham A, Balhorn A, Miyahara N, Takeda K, Gelfand EW (2005) The enhancement or prevention of airway hyperresponsiveness during reinfection with respiratory syncytial virus is critically dependent on the age at first infection and IL-13 production. J Immunol 175(3):1876–1883CrossRefPubMedGoogle Scholar
  49. 49.
    Welliver TP, Garofalo RP, Hosakote Y, Hintz KH, Avendano L, Sanchez K, Velozo L, Jafri H, Chavez-Bueno S, Ogra PL, McKinney L, Reed JL, Welliver RC Sr (2007) Severe human lower respiratory tract illness caused by respiratory syncytial virus and influenza virus is characterized by the absence of pulmonary cytotoxic lymphocyte responses. J Infect Dis 195(8):1126–1136. doi: 10.1086/512615 CrossRefPubMedGoogle Scholar
  50. 50.
    Johnson JE, Gonzales RA, Olson SJ, Wright PF, Graham BS (2007) The histopathology of fatal untreated human respiratory syncytial virus infection. Mod Pathol 20(1):108–119. doi: 10.1038/modpathol.3800725 CrossRefPubMedGoogle Scholar
  51. 51.
    Sullivan BM, Juedes A, Szabo SJ, von Herrath M, Glimcher LH (2003) Antigen-driven effector CD8 T cell function regulated by T-bet. Proc Natl Acad Sci U S A 100(26):15818–15823. doi: 10.1073/pnas.2636938100 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    White GP, Watt PM, Holt BJ, Holt PG (2002) Differential patterns of methylation of the IFN-gamma promoter at CpG and non-CpG sites underlie differences in IFN-gamma gene expression between human neonatal and adult CD45RO-T cells. J Immunol 168(6):2820–2827CrossRefPubMedGoogle Scholar
  53. 53.
    Rose S, Lichtenheld M, Foote MR, Adkins B (2007) Murine neonatal CD4+ cells are poised for rapid Th2 effector-like function. J Immunol 178(5):2667–2678CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lewis DB, Yu CC, Meyer J, English BK, Kahn SJ, Wilson CB (1991) Cellular and molecular mechanisms for reduced interleukin 4 and interferon-gamma production by neonatal T cells. J Clin Invest 87(1):194–202. doi: 10.1172/JCI114970 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Wu CY, Demeure C, Kiniwa M, Gately M, Delespesse G (1993) IL-12 induces the production of IFN-gamma by neonatal human CD4 T cells. J Immunol 151(4):1938–1949PubMedGoogle Scholar
  56. 56.
    Li L, Lee HH, Bell JJ, Gregg RK, Ellis JS, Gessner A, Zaghouani H (2004) IL-4 utilizes an alternative receptor to drive apoptosis of Th1 cells and skews neonatal immunity toward Th2. Immunity 20(4):429–440CrossRefPubMedGoogle Scholar
  57. 57.
    Forsthuber T, Yip HC, Lehmann PV (1996) Induction of TH1 and TH2 immunity in neonatal mice. Science 271(5256):1728–1730CrossRefPubMedGoogle Scholar
  58. 58.
    Pala P, Bjarnason R, Sigurbergsson F, Metcalfe C, Sigurs N, Openshaw PJ (2002) Enhanced IL-4 responses in children with a history of respiratory syncytial virus bronchiolitis in infancy. Eur Respir J 20(2):376–382CrossRefPubMedGoogle Scholar
  59. 59.
    Mbawuike IN, Wells J, Byrd R, Cron SG, Glezen WP, Piedra PA (2001) HLA-restricted CD8+ cytotoxic T lymphocyte, interferon-gamma, and interleukin-4 responses to respiratory syncytial virus infection in infants and children. J Infect Dis 183(5):687–696. doi: 10.1086/318815 CrossRefPubMedGoogle Scholar
  60. 60.
    Cannon MJ, Openshaw PJ, Askonas BA (1988) Cytotoxic T cells clear virus but augment lung pathology in mice infected with respiratory syncytial virus. J Exp Med 168(3):1163–1168CrossRefPubMedGoogle Scholar
  61. 61.
    Sarzotti M, Robbins DS, Hoffman PM (1996) Induction of protective CTL responses in newborn mice by a murine retrovirus. Science 271(5256):1726–1728CrossRefPubMedGoogle Scholar
  62. 62.
    Fukui T, Katamura K, Abe N, Kiyomasu T, Iio J, Ueno H, Mayumi M, Furusho K (1997) IL-7 induces proliferation, variable cytokine-producing ability and IL-2 responsiveness in naive CD4+ T-cells from human cord blood. Immunol Lett 59(1):21–28CrossRefPubMedGoogle Scholar
  63. 63.
    Hassan J, Reen DJ (1998) IL-7 promotes the survival and maturation but not differentiation of human post-thymic CD4+ T cells. Eur J Immunol 28(10):3057–3065. doi: 10.1002/(SICI)1521-4141(199810)28:10<3057:: AID-IMMU3057>3.0.CO;2-ZCrossRefPubMedGoogle Scholar
  64. 64.
    Gibbons DL, Haque SF, Silberzahn T, Hamilton K, Langford C, Ellis P, Carr R, Hayday AC (2009) Neonates harbour highly active gammadelta T cells with selective impairments in preterm infants. Eur J Immunol 39(7):1794–1806. doi: 10.1002/eji.200939222 CrossRefPubMedGoogle Scholar
  65. 65.
    Elahi S, Ertelt JM, Kinder JM, Jiang TT, Zhang X, Xin L, Chaturvedi V, Strong BS, Qualls JE, Steinbrecher KA, Kalfa TA, Shaaban AF, Way SS (2013) Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature 504(7478):158–162. doi: 10.1038/nature12675 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Mold JE, Venkatasubrahmanyam S, Burt TD, Michaelsson J, Rivera JM, Galkina SA, Weinberg K, Stoddart CA, McCune JM (2010) Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science 330(6011):1695–1699. doi: 10.1126/science.1196509 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mold JE, Michaelsson J, Burt TD, Muench MO, Beckerman KP, Busch MP, Lee TH, Nixon DF, McCune JM (2008) Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 322(5907):1562–1565. doi: 10.1126/science.1164511 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Bronevetsky Y, Burt TD, McCune JM (2016) Lin28b regulates fetal regulatory T cell differentiation through modulation of TGF-beta signaling. J Immunol 197(11):4344–4350. doi: 10.4049/jimmunol.1601070 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Rathmell JC, Farkash EA, Gao W, Thompson CB (2001) IL-7 enhances the survival and maintains the size of naive T cells. J Immunol 167(12):6869–6876CrossRefPubMedGoogle Scholar
  70. 70.
    Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, Weinberg KI, Surh CD (2001) IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci U S A 98(15):8732–8737CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Li J, Huston G, Swain SL (2003) IL-7 promotes the transition of CD4 effectors to persistent memory cells. J Exp Med 198(12):1807–1815CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Schluns KS, Kieper WC, Jameson SC, Lefrancois L (2000) Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 1:426–432CrossRefPubMedGoogle Scholar
  73. 73.
    Schluns KS, Williams K, Ma A, Zheng XX, Lefrancois L (2002) Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J Immunol 168(10):4827–4831CrossRefPubMedGoogle Scholar
  74. 74.
    Tan JT, Ernst B, Kieper WC, LeRoy E, Sprent J, Surh CD (2002) Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8(+) cells but are not required for memory phenotype CD4(+) cells. J Exp Med 195(12):1523–1532CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Goldrath AW, Sivakumar PV, Glaccum M, Kennedy MK, Bevan MJ, Benoist C, Mathis D, Butz EA (2002) Cytokine requirements for acute and basal homeostatic proliferation of naive and memory CD8+ T cells. J Exp Med 195(12):1515–1522CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Schonland SO, Zimmer JK, Lopez-Benitez CM, Widmann T, Ramin KD, Goronzy JJ, Weyand CM (2003) Homeostatic control of T-cell generation in neonates. Blood 102(4):1428–1434. doi: 10.1182/blood-2002-11-3591 CrossRefPubMedGoogle Scholar
  77. 77.
    Schuler T, Hammerling GJ, Arnold B (2004) Cutting edge: IL-7-dependent homeostatic proliferation of CD8+ T cells in neonatal mice allows the generation of long-lived natural memory T cells. J Immunol 172(1):15–19CrossRefPubMedGoogle Scholar
  78. 78.
    Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4(12):1191–1198CrossRefPubMedGoogle Scholar
  79. 79.
    Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, Hagman J, Gapin L, Kaech SM (2007) Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27(2):281–295CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Marshall HD, Chandele A, Jung YW, Meng H, Poholek AC, Parish IA, Rutishauser R, Cui W, Kleinstein SH, Craft J, Kaech SM (2011) Differential expression of Ly6C and T-bet distinguish effector and memory Th1 CD4(+) cell properties during viral infection. Immunity 35(4):633–646. doi: 10.1016/j.immuni.2011.08.016 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Hua L, Yao S, Pham D, Jiang L, Wright J, Sawant D, Dent AL, Braciale TJ, Kaplan MH, Sun J (2013) Cytokine-dependent induction of CD4+ T cells with cytotoxic potential during influenza virus infection. J Virol 87(21):11884–11893. doi: 10.1128/JVI.01461-13 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Laidlaw BJ, Zhang N, Marshall HD, Staron MM, Guan T, Hu Y, Cauley LS, Craft J, Kaech SM (2014) CD4(+) T cell help guides formation of CD103(+) lung-resident memory CD8(+) T cells during influenza viral infection. Immunity 41(4):633–645. doi: 10.1016/j.immuni.2014.09.007 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Smith NL, Wissink E, Wang J, Pinello JF, Davenport MP, Grimson A, Rudd BD (2014) Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life. J Immunol 193(1):177–184. doi: 10.4049/jimmunol.1400553 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Zens KD, Chen JK, Guyer RS, Wu FL, Cvetkovski F, Miron M, Farber DL (2017) Reduced generation of lung tissue-resident memory T cells during infancy. J Exp Med (In Press) Google Scholar
  85. 85.
    Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions [see comments]. Nature 401(6754):708–712CrossRefPubMedGoogle Scholar
  86. 86.
    Shiow LR, Rosen DB, Brdickova N, Xu Y, An J, Lanier LL, Cyster JG, Matloubian M (2006) CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440(7083):540–544. doi: 10.1038/nature04606 CrossRefPubMedGoogle Scholar
  87. 87.
    Mueller SN, Gebhardt T, Carbone FR, Heath WR (2013) Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol 31:137–161. doi: 10.1146/annurev-immunol-032712-095954 CrossRefPubMedGoogle Scholar
  88. 88.
    Schenkel JM, Fraser KA, Beura LK, Pauken KE, Vezys V, Masopust D (2014) T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346(6205):98–101. doi: 10.1126/science.1254536 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Ariotti S, Hogenbirk MA, Dijkgraaf FE, Visser LL, Hoekstra ME, Song JY, Jacobs H, Haanen JB, Schumacher TN (2014) T cell memory. Skin-resident memory CD8(+) T cells trigger a state of tissue-wide pathogen alert. Science 346(6205):101–105. doi: 10.1126/science.1254803 CrossRefPubMedGoogle Scholar
  90. 90.
    Glennie ND, Yeramilli VA, Beiting DP, Volk SW, Weaver CT, Scott P (2015) Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection. J Exp Med 212(9):1405–1414. doi: 10.1084/jem.20142101 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Lieberman JM, Greenberg DP, Wong VK, Partridge S, Chang SJ, Chiu CY, Ward JI (1995) Effect of neonatal immunization with diphtheria and tetanus toxoids on antibody responses to Haemophilus influenzae type b conjugate vaccines. J Pediatr 126(2):198–205CrossRefPubMedGoogle Scholar
  92. 92.
    Vekemans J, Ota MO, Wang EC, Kidd M, Borysiewicz LK, Whittle H, McAdam KP, Morgan G, Marchant A (2002) T cell responses to vaccines in infants: defective IFNgamma production after oral polio vaccination. Clin Exp Immunol 127(3):495–498CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Plotkin SA, Orenstein WA, Offit PA (2013) Vaccines. Sixth edition. edn, Elsevier Saunders, Philadelphia, PaGoogle Scholar
  94. 94.
    Onorato IM, Modlin JF, McBean AM, Thoms ML, Losonsky GA, Bernier RH (1991) Mucosal immunity induced by enhance-potency inactivated and oral polio vaccines. J Infect Dis 163(1):1–6CrossRefPubMedGoogle Scholar
  95. 95.
    Modlin JF, Halsey NA, Thoms ML, Meschievitz CK, Patriarca PA (1997) Humoral and mucosal immunity in infants induced by three sequential inactivated poliovirus vaccine-live attenuated oral poliovirus vaccine immunization schedules. Baltimore Area Polio Vaccine Study Group J Infect Dis 175(Suppl 1):S228–S234Google Scholar
  96. 96.
    Hammerschmidt SI, Friedrichsen M, Boelter J, Lyszkiewicz M, Kremmer E, Pabst O, Forster R (2011) Retinoic acid induces homing of protective T and B cells to the gut after subcutaneous immunization in mice. J Clin Invest 121(8):3051–3061. doi: 10.1172/JCI44262 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Zens KD, Chen J-K, Farber DL (2016) Vaccine generated lung tissue resident memory T cells provide heterosubtypic protection to influenza infection. J Clin Invest Insight 1(10).Google Scholar
  98. 98.
    Perdomo C, Zedler U, Kuhl AA, Lozza L, Saikali P, Sander LE, Vogelzang A, Kaufmann SH, Kupz A (2016) Mucosal BCG vaccination induces protective lung-resident memory T cell populations against tuberculosis. MBio 7(6). doi: 10.1128/mBio.01686-16
  99. 99.
    Marchant A, Goetghebuer T, Ota MO, Wolfe I, Ceesay SJ, De Groote D, Corrah T, Bennett S, Wheeler J, Huygen K, Aaby P, McAdam KP, Newport MJ (1999) Newborns develop a Th1-type immune response to Mycobacterium bovis bacillus Calmette-Guerin vaccination. J Immunol 163(4):2249–2255PubMedGoogle Scholar
  100. 100.
    Sasaki S, Jaimes MC, Holmes TH, Dekker CL, Mahmood K, Kemble GW, Arvin AM, Greenberg HB (2007) Comparison of the influenza virus-specific effector and memory B-cell responses to immunization of children and adults with live attenuated or inactivated influenza virus vaccines. J Virol 81(1):215–228CrossRefPubMedGoogle Scholar
  101. 101.
    Debock I, Jaworski K, Chadlaoui H, Delbauve S, Passon N, Twyffels L, Leo O, Flamand V (2013) Neonatal follicular Th cell responses are impaired and modulated by IL-4. J Immunol 191(3):1231–1239. doi: 10.4049/jimmunol.1203288 CrossRefPubMedGoogle Scholar
  102. 102.
    Mastelic Gavillet B, Eberhardt CS, Auderset F, Castellino F, Seubert A, Tregoning JS, Lambert PH, de Gregorio E, Del Giudice G, Siegrist CA (2015) MF59 mediates its B cell adjuvanticity by promoting T follicular helper cells and thus germinal center responses in adult and early life. J Immunol 194(10):4836–45. doi: 10.4049/jimmunol.1402071
  103. 103.
    He XS, Holmes TH, Mahmood K, Kemble GW, Dekker CL, Arvin AM, Greenberg HB (2008) Phenotypic changes in influenza-specific CD8+ T cells after immunization of children and adults with influenza vaccines. J Infect Dis 197(6):803–811. doi: 10.1086/528804 CrossRefPubMedGoogle Scholar
  104. 104.
    Belshe RB, Edwards KM, Vesikari T, Black SV, Walker RE, Hultquist M, Kemble G, Connor EM, Group C-TCES (2007) Live attenuated versus inactivated influenza vaccine in infants and young children. N Engl J Med 356(7):685–696. doi: 10.1056/NEJMoa065368 CrossRefPubMedGoogle Scholar
  105. 105.
    Bernstein HHK, D. W. (2016) Intranasal FluMISSED its target. AAP News & Journals Gateway. http://www.Aappublications.Org/news/2016/07/12/LAIV071216. 2016Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Kyra D. Zens
    • 1
    • 2
  • Thomas Connors
    • 1
    • 3
  • Donna L. Farber
    • 1
    • 2
    • 4
  1. 1.Columbia Center for Translational ImmunologyColumbia University Medical CenterNew YorkUSA
  2. 2.Department of Microbiology and ImmunologyColumbia University Medical CenterNew YorkUSA
  3. 3.Department of Pediatrics, Division of Pediatric Critical Care MedicineColumbia University Medical CenterNew YorkUSA
  4. 4.Department of SurgeryColumbia University Medical CenterNew YorkUSA

Personalised recommendations