Seminars in Immunopathology

, Volume 40, Issue 1, pp 3–14 | Cite as

How novel structures inform understanding of complement function

  • Elena Goicoechea de Jorge
  • Hugo Yebenes
  • Marina Serna
  • Agustín Tortajada
  • Oscar Llorca
  • Santiago Rodríguez de Córdoba


During the last decade, the complement field has experienced outstanding advancements in the mechanistic understanding of how complement activators are recognized, what C3 activation means, how protein complexes like the C3 convertases and the membrane attack complex are assembled, and how positive and negative complement regulators perform their function. All of this has been made possible mostly because of the contributions of structural biology to the study of the complement components. The wealth of novel structural data has frequently provided support to previously held knowledge, but often has added alternative and unexpected insights into complement function. Here, we will review some of these findings focusing in the alternative and terminal complement pathways.


Complement Structural biology C3\C5 convertase Complement regulators Factor H Membrane attack complex 



SRdeC is supported by the Spanish “Ministerio de Economía y Competitividad-FEDER” (SAF2015-66287R), the Seventh Framework Programme European Union Project EURenOmics (305608), and the Autonomous Region of Madrid (S2010/BMD-2316). SRdeC is member of the “CIB intramural Program “Molecular Machines for Better Life (MACBET).” EGdeJ is supported by the Spanish “Ministerio de Economía y Competitividad-FEDER” (RYC-2013-13395 and SAF2014-52339P). OL is supported by the Spanish Ministry of Economy, Industry and Competitiveness (SAF2014-52301-R). AT and MS are supported by the Spanish “Ministerio de Economía y Competitividad-FEDER” (IJCI-2015-25222 and IJCI-2015-24388, respectively).


  1. 1.
    Janssen BJ, Huizinga EG, Raaijmakers HC, Roos A, Daha MR, Nilsson-Ekdahl K, Nilsson B, Gros P (2005) Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437(7058):505–511. doi: 10.1038/nature04005 CrossRefPubMedGoogle Scholar
  2. 2.
    Janssen BJ, Christodoulidou A, McCarthy A, Lambris JD, Gros P (2006) Structure of C3b reveals conformational changes that underlie complement activity. Nature 444(7116):213–216. doi: 10.1038/nature05172 CrossRefPubMedGoogle Scholar
  3. 3.
    Nagar B, Jones RG, Diefenbach RJ, Isenman DE, Rini JM (1998) X-ray crystal structure of C3d: a C3 fragment and ligand for complement receptor 2. Science 280(5367):1277–1281CrossRefPubMedGoogle Scholar
  4. 4.
    Milder FJ, Gomes L, Schouten A, Janssen BJ, Huizinga EG, Romijn RA, Hemrika W, Roos A, Daha MR, Gros P (2007) Factor B structure provides insights into activation of the central protease of the complement system. Nat Struct Mol Biol 14(3):224–228. doi: 10.1038/nsmb1210 CrossRefPubMedGoogle Scholar
  5. 5.
    Janssen BJ, Gomes L, Koning RI, Svergun DI, Koster AJ, Fritzinger DC, Vogel CW, Gros P (2009) Insights into complement convertase formation based on the structure of the factor B-cobra venom factor complex. EMBO J 28(16):2469–2478. doi: 10.1038/emboj.2009.184 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Torreira E, Tortajada A, Montes T, Rodriguez de Cordoba S, Llorca O (2009) 3D structure of the C3bB complex provides insights into the activation and regulation of the complement alternative pathway convertase. Proc Natl Acad Sci U S A 106(3):882–887. doi: 10.1073/pnas.0810860106 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rooijakkers SH, Wu J, Ruyken M, van Domselaar R, Planken KL, Tzekou A, Ricklin D, Lambris JD, Janssen BJ, van Strijp JA, Gros P (2009) Structural and functional implications of the alternative complement pathway C3 convertase stabilized by a staphylococcal inhibitor. Nat Immunol 10(7):721–727. doi: 10.1038/ni.1756 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Forneris F, Ricklin D, Wu J, Tzekou A, Wallace RS, Lambris JD, Gros P (2010) Structures of C3b in complex with factors B and D give insight into complement convertase formation. Science 330(6012):1816–1820. doi: 10.1126/science.1195821 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wu J, Wu YQ, Ricklin D, Janssen BJ, Lambris JD, Gros P (2009) Structure of complement fragment C3b-factor H and implications for host protection by complement regulators. Nat Immunol 10(7):728–733. doi: 10.1038/ni.1755 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Roversi P, Johnson S, Caesar JJ, McLean F, Leath KJ, Tsiftsoglou SA, Morgan BP, Harris CL, Sim RB, Lea SM (2011) Structural basis for complement factor I control and its disease-associated sequence polymorphisms. Proc Natl Acad Sci U S A 108(31):12839–12844. doi: 10.1073/pnas.1102167108 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Blaum BS, Hannan JP, Herbert AP, Kavanagh D, Uhrin D, Stehle T (2015) Structural basis for sialic acid-mediated self-recognition by complement factor H. Nat Chem Biol 11(1):77–82. doi: 10.1038/nchembio.1696 CrossRefPubMedGoogle Scholar
  12. 12.
    Morgan HP, Schmidt CQ, Guariento M, Blaum BS, Gillespie D, Herbert AP, Kavanagh D, Mertens HD, Svergun DI, Johansson CM, Uhrin D, Barlow PN, Hannan JP (2011) Structural basis for engagement by complement factor H of C3b on a self surface. Nat Struct Mol Biol 18(4):463–470. doi: 10.1038/nsmb.2018 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Forneris F, Wu J, Xue X, Ricklin D, Lin Z, Sfyroera G, Tzekou A, Volokhina E, Granneman JC, Hauhart R, Bertram P, Liszewski MK, Atkinson JP, Lambris JD, Gros P (2016) Regulators of complement activity mediate inhibitory mechanisms through a common C3b-binding mode. EMBO J 35(10):1133–1149. doi: 10.15252/embj.201593673 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Alcorlo M, Tortajada A, Rodriguez de Cordoba S, Llorca O (2013) Structural basis for the stabilization of the complement alternative pathway C3 convertase by properdin. Proc Natl Acad Sci U S A 110(33):13504–13509. doi: 10.1073/pnas.1309618110 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pedersen DV, Roumenina L, Jensen RK, Gadeberg TA, Marinozzi C, Picard C, Rybkine T, Thiel S, Sorensen UB, Stover C, Fremeaux-Bacchi V, Andersen GR (2017) Functional and structural insight into properdin control of complement alternative pathway amplification. EMBO J 36(8):1084–1099. doi: 10.15252/embj.201696173 CrossRefPubMedGoogle Scholar
  16. 16.
    Mayer MM (1972) Mechanism of cytolysis by complement. Proc Natl Acad Sci U S A 69(10):2954–2958CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Aleshin AE, Schraufstatter IU, Stec B, Bankston LA, Liddington RC, DiScipio RG (2012) Structure of complement C6 suggests a mechanism for initiation and unidirectional, sequential assembly of membrane attack complex (MAC). J Biol Chem 287(13):10210–10222. doi: 10.1074/jbc.M111.327809 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hadders MA, Bubeck D, Roversi P, Hakobyan S, Forneris F, Morgan BP, Pangburn MK, Llorca O, Lea SM, Gros P (2012) Assembly and regulation of the membrane attack complex based on structures of C5b6 and sC5b9. Cell Rep 1(3):200–207. doi: 10.1016/j.celrep.2012.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Laursen NS, Gordon N, Hermans S, Lorenz N, Jackson N, Wines B, Spillner E, Christensen JB, Jensen M, Fredslund F, Bjerre M, Sottrup-Jensen L, Fraser JD, Andersen GR (2010) Structural basis for inhibition of complement C5 by the SSL7 protein from Staphylococcus Aureus. Proc Natl Acad Sci U S A 107(8):3681–3686. doi: 10.1073/pnas.0910565107 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lovelace LL, Cooper CL, Sodetz JM, Lebioda L (2011) Structure of human C8 protein provides mechanistic insight into membrane pore formation by complement. J Biol Chem 286(20):17585–17592. doi: 10.1074/jbc.M111.219766 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Serna M, Giles JL, Morgan BP, Bubeck D (2016) Structural basis of complement membrane attack complex formation. Nat Commun 7:10587. doi: 10.1038/ncomms10587 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gros P, Milder FJ, Janssen BJ (2008) Complement driven by conformational changes. Nat Rev Immunol 8(1):48–58. doi: 10.1038/nri2231 CrossRefPubMedGoogle Scholar
  23. 23.
    Pangburn MK, Muller-Eberhard HJ (1986) The C3 convertase of the alternative pathway of human complement. Enzymic properties of the bimolecular proteinase. Biochem J 235(3):723–730CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tortajada A, Montes T, Martinez-Barricarte R, Morgan BP, Harris CL, de Cordoba SR (2009) The disease-protective complement factor H allotypic variant Ile62 shows increased binding affinity for C3b and enhanced cofactor activity. Hum Mol Genet 18(18):3452–3461. doi: 10.1093/hmg/ddp289 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kuttner-Kondo L, Hourcade DE, Anderson VE, Muqim N, Mitchell L, Soares DC, Barlow PN, Medof ME (2007) Structure-based mapping of DAF active site residues that accelerate the decay of C3 convertases. J Biol Chem 282(25):18552–18562. doi: 10.1074/jbc.M611650200 CrossRefPubMedGoogle Scholar
  26. 26.
    Lukacik P, Roversi P, White J, Esser D, Smith GP, Billington J, Williams PA, Rudd PM, Wormald MR, Harvey DJ, Crispin MD, Radcliffe CM, Dwek RA, Evans DJ, Morgan BP, Smith RA, Lea SM (2004) Complement regulation at the molecular level: the structure of decay-accelerating factor. Proc Natl Acad Sci U S A 101(5):1279–1284. doi: 10.1073/pnas.0307200101 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Harris CL, Pettigrew DM, Lea SM, Morgan BP (2007) Decay-accelerating factor must bind both components of the complement alternative pathway C3 convertase to mediate efficient decay. J Immunol 178(1):352–359CrossRefPubMedGoogle Scholar
  28. 28.
    Liszewski MK, Leung M, Cui W, Subramanian VB, Parkinson J, Barlow PN, Manchester M, Atkinson JP (2000) Dissecting sites important for complement regulatory activity in membrane cofactor protein (MCP; CD46). J Biol Chem 275(48):37692–37701. doi: 10.1074/jbc.M004650200 CrossRefPubMedGoogle Scholar
  29. 29.
    Krych-Goldberg M, Hauhart RE, Porzukowiak T, Atkinson JP (2005) Synergy between two active sites of human complement receptor type 1 (CD35) in complement regulation: implications for the structure of the classical pathway C3 convertase and generation of more potent inhibitors. J Immunol 175(7):4528–4535CrossRefPubMedGoogle Scholar
  30. 30.
    Gautam AK, Panse Y, Ghosh P, Reza MJ, Mullick J, Sahu A (2015) Mutational analysis of Kaposica reveals that bridging of MG2 and CUB domains of target protein is crucial for the cofactor activity of RCA proteins. Proc Natl Acad Sci U S A 112(41):12794–12799. doi: 10.1073/pnas.1506449112 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nonaka M, Yoshizaki F (2004) Primitive complement system of invertebrates. Immunol Rev 198:203–215CrossRefPubMedGoogle Scholar
  32. 32.
    Krych M, Hourcade D, Atkinson JP (1991) Sites within the complement C3b/C4b receptor important for the specificity of ligand binding. Proc Natl Acad Sci U S A 88(10):4353–4357CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lopez-Perrote A, Harrison RE, Subias M, Alcorlo M, Rodriguez de Cordoba S, Morikis D, Llorca O (2017) Ionic tethering contributes to the conformational stability and function of complement C3b. Mol Immunol 85:137–147. doi: 10.1016/j.molimm.2016.12.015 CrossRefPubMedGoogle Scholar
  34. 34.
    Rodriguez E, Nan R, Li K, Gor J, Perkins SJ (2015) A revised mechanism for the activation of complement C3 to C3b: a molecular explanation of a disease-associated polymorphism. J Biol Chem 290(4):2334–2350. doi: 10.1074/jbc.M114.605691 CrossRefPubMedGoogle Scholar
  35. 35.
    Heurich M, Martinez-Barricarte R, Francis NJ, Roberts DL, Rodriguez de Cordoba S, Morgan BP, Harris CL (2011) Common polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk. Proc Natl Acad Sci U S A 108(21):8761–8766. doi: 10.1073/pnas.1019338108 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Martinez-Barricarte R, Heurich M, Lopez-Perrote A, Tortajada A, Pinto S, Lopez-Trascasa M, Sanchez-Corral P, Morgan BP, Llorca O, Harris CL, Rodriguez de Cordoba S (2015) The molecular and structural bases for the association of complement C3 mutations with atypical hemolytic uremic syndrome. Mol Immunol 66(2):263–273. doi: 10.1016/j.molimm.2015.03.248 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Chen X, Yu Y, Mi LZ, Walz T, Springer TA (2012) Molecular basis for complement recognition by integrin alphaXbeta2. Proc Natl Acad Sci U S A 109(12):4586–4591. doi: 10.1073/pnas.1202051109 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nishida N, Walz T, Springer TA (2006) Structural transitions of complement component C3 and its activation products. Proc Natl Acad Sci U S A 103(52):19737–19742. doi: 10.1073/pnas.0609791104 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Alcorlo M, Lopez-Perrote A, Delgado S, Yebenes H, Subias M, Rodriguez-Gallego C, Rodriguez de Cordoba S, Llorca O (2015) Structural insights on complement activation. FEBS J 282(20):3883–3891. doi: 10.1111/febs.13399 CrossRefPubMedGoogle Scholar
  40. 40.
    Papanastasiou M, Koutsogiannaki S, Sarigiannis Y, Geisbrecht BV, Ricklin D, Lambris JD (2017) Structural implications for the formation and function of the complement effector protein iC3b. J Immunol 198(8):3326–3335. doi: 10.4049/jimmunol.1601864 CrossRefPubMedGoogle Scholar
  41. 41.
    Nilsson UR, Funke L, Nilsson B, Ekdahl KN (2011) Two conformational forms of target-bound iC3b that distinctively bind complement receptors 1 and 2 and two specific monoclonal antibodies. Ups J Med Sci 116(1):26–33. doi: 10.3109/03009734.2010.528465 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Chen H, Ricklin D, Hammel M, Garcia BL, McWhorter WJ, Sfyroera G, Wu YQ, Tzekou A, Li S, Geisbrecht BV, Woods VL Jr, Lambris JD (2010) Allosteric inhibition of complement function by a staphylococcal immune evasion protein. Proc Natl Acad Sci U S A 107(41):17621–17626. doi: 10.1073/pnas.1003750107 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Langford-Smith A, Day AJ, Bishop PN, Clark SJ (2015) Complementing the sugar code: role of GAGs and sialic acid in complement regulation. Front Immunol 6:25. doi: 10.3389/fimmu.2015.00025 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Varki A (2011) Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self-associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology 21(9):1121–1124CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Clark SJ, Ridge LA, Herbert AP, Hakobyan S, Mulloy B, Lennon R, Wurzner R, Morgan BP, Uhrin D, Bishop PN, Day AJ (2013) Tissue-specific host recognition by complement factor H is mediated by differential activities of its glycosaminoglycan-binding regions. J Immunol 190(5):2049–2057. doi: 10.4049/jimmunol.1201751 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lea SM, Johnson S (2012) Putting the structure into complement. Immunobiology 217(11):1117–1121. doi: 10.1016/j.imbio.2012.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Makou E, Herbert AP, Barlow PN (2013) Functional anatomy of complement factor H. Biochemistry 52(23):3949–3962. doi: 10.1021/bi4003452 CrossRefPubMedGoogle Scholar
  48. 48.
    Kopp A, Strobel S, Tortajada A, Rodriguez de Cordoba S, Sanchez-Corral P, Prohaszka Z, Lopez-Trascasa M, Jozsi M (2012) Atypical hemolytic uremic syndrome-associated variants and autoantibodies impair binding of factor h and factor h-related protein 1 to pentraxin 3. J Immunol 189(4):1858–1867. doi: 10.4049/jimmunol.1200357 CrossRefPubMedGoogle Scholar
  49. 49.
    Kajander T, Lehtinen MJ, Hyvarinen S, Bhattacharjee A, Leung E, Isenman DE, Meri S, Goldman A, Jokiranta TS (2011) Dual interaction of factor H with C3d and glycosaminoglycans in host-nonhost discrimination by complement. Proc Natl Acad Sci U S A 108(7):2897–2902. doi: 10.1073/pnas.1017087108 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Prosser BE, Johnson S, Roversi P, Herbert AP, Blaum BS, Tyrrell J, Jowitt TA, Clark SJ, Tarelli E, Uhrin D, Barlow PN, Sim RB, Day AJ, Lea SM (2007) Structural basis for complement factor H linked age-related macular degeneration. J Exp Med 204(10):2277–2283. doi: 10.1084/jem.20071069 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Blaum BS (2017) The lectin self of complement factor H. Curr Opin Struct Biol 44:111–118. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  52. 52.
    Jozsi M, Tortajada A, Uzonyi B, Goicoechea de Jorge E, Rodriguez de Cordoba S (2015) Factor H-related proteins determine complement-activating surfaces. Trends Immunol 36(6):374–384. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  53. 53.
    Goicoechea de Jorge E, Caesar JJ, Malik TH, Patel M, Colledge M, Johnson S, Hakobyan S, Morgan BP, Harris CL, Pickering MC, Lea SM (2013) Dimerization of complement factor H-related proteins modulates complement activation in vivo. Proc Natl Acad Sci U S A 110(12):4685–4690. doi: 10.1073/pnas.1219260110 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Tortajada A, Yebenes H, Abarrategui-Garrido C, Anter J, Garcia-Fernandez JM, Martinez-Barricarte R, Alba-Dominguez M, Malik TH, Bedoya R, Cabrera Perez R, Lopez Trascasa M, Pickering MC, Harris CL, Sanchez-Corral P, Llorca O, Rodriguez de Cordoba S (2013) C3 glomerulopathy-associated CFHR1 mutation alters FHR oligomerization and complement regulation. J Clin Invest 123(6):2434–2446. doi: 10.1172/JCI68280 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Valoti E, Alberti M, Tortajada A, Garcia-Fernandez J, Gastoldi S, Besso L, Bresin E, Remuzzi G, Rodriguez de Cordoba S, Noris M (2015) A novel atypical hemolytic uremic syndrome-associated hybrid CFHR1/CFH gene encoding a fusion protein that antagonizes factor H-dependent complement regulation. J Am Soc Nephrol: JASN 26(1):209–219. doi: 10.1681/ASN.2013121339 CrossRefPubMedGoogle Scholar
  56. 56.
    Venables JP, Strain L, Routledge D, Bourn D, Powell HM, Warwicker P, Diaz-Torres ML, Sampson A, Mead P, Webb M, Pirson Y, Jackson MS, Hughes A, Wood KM, Goodship JA, Goodship TH (2006) Atypical haemolytic uraemic syndrome associated with a hybrid complement gene. PLoS Med 3(10):e431. doi: 10.1371/journal.pmed.0030431 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Rawal N, Pangburn MK (2001) Structure/function of C5 convertases of complement. Int Immunopharmacol 1(3):415–422CrossRefPubMedGoogle Scholar
  58. 58.
    Pangburn MK, Rawal N (2002) Structure and function of complement C5 convertase enzymes. Biochem Soc Trans 30(Pt 6):1006–1010. doi: 10.1042/BST0301006 CrossRefPubMedGoogle Scholar
  59. 59.
    Hong K, Kinoshita T, Pramoonjago P, Kim YU, Seya T, Inoue K (1991) Reconstitution of C5 convertase of the alternative complement pathway with isolated C3b dimer and factors B and D. J Immunol 146(6):1868–1873PubMedGoogle Scholar
  60. 60.
    Berends ET, Gorham RD Jr, Ruyken M, Soppe JA, Orhan H, Aerts PC, de Haas CJ, Gros P, Rooijakkers SH (2015) Molecular insights into the surface-specific arrangement of complement C5 convertase enzymes. BMC Biol 13:93. doi: 10.1186/s12915-015-0203-8 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Laursen NS, Andersen KR, Braren I, Spillner E, Sottrup-Jensen L, Andersen GR (2011) Substrate recognition by complement convertases revealed in the C5-cobra venom factor complex. EMBO J 30(3):606–616. doi: 10.1038/emboj.2010.341 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Martinez-Barricarte R, Heurich M, Valdes-Canedo F, Vazquez-Martul E, Torreira E, Montes T, Tortajada A, Pinto S, Lopez-Trascasa M, Morgan BP, Llorca O, Harris CL, Rodriguez de Cordoba S (2010) Human C3 mutation reveals a mechanism of dense deposit disease pathogenesis and provides insights into complement activation and regulation. J Clin Invest 120(10):3702–3712. doi: 10.1172/JCI43343 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Roumenina LT, Jablonski M, Hue C, Blouin J, Dimitrov JD, Dragon-Durey MA, Cayla M, Fridman WH, Macher MA, Ribes D, Moulonguet L, Rostaing L, Satchell SC, Mathieson PW, Sautes-Fridman C, Loirat C, Regnier CH, Halbwachs-Mecarelli L, Fremeaux-Bacchi V (2009) Hyperfunctional C3 convertase leads to complement deposition on endothelial cells and contributes to atypical hemolytic uremic syndrome. Blood 114(13):2837–2845. doi: 10.1182/blood-2009-01-197640 CrossRefPubMedGoogle Scholar
  64. 64.
    Janssen BJ, Halff EF, Lambris JD, Gros P (2007) Structure of compstatin in complex with complement component C3c reveals a new mechanism of complement inhibition. J Biol Chem 282(40):29241–29247. doi: 10.1074/jbc.M704587200 CrossRefPubMedGoogle Scholar
  65. 65.
    Wiesmann C, Katschke KJ, Yin J, Helmy KY, Steffek M, Fairbrother WJ, McCallum SA, Embuscado L, DeForge L, Hass PE, van Lookeren CM (2006) Structure of C3b in complex with CRIg gives insights into regulation of complement activation. Nature 444(7116):217–220. doi: 10.1038/nature05263 CrossRefPubMedGoogle Scholar
  66. 66.
    Katschke KJ Jr, Stawicki S, Yin J, Steffek M, Xi H, Sturgeon L, Hass PE, Loyet KM, Deforge L, Wu Y, van Lookeren CM, Wiesmann C (2009) Structural and functional analysis of a C3b-specific antibody that selectively inhibits the alternative pathway of complement. J Biol Chem 284(16):10473–10479. doi: 10.1074/jbc.M809106200 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hillmen P, Young NS, Schubert J, Brodsky RA, Socie G, Muus P, Roth A, Szer J, Elebute MO, Nakamura R, Browne P, Risitano AM, Hill A, Schrezenmeier H, Fu CL, Maciejewski J, Rollins SA, Mojcik CF, Rother RP, Luzzatto L (2006) The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med 355(12):1233–1243. doi: 10.1056/NEJMoa061648 CrossRefPubMedGoogle Scholar
  68. 68.
    Brachet G, Bourquard T, Gallay N, Reiter E, Gouilleux-Gruart V, Poupon A, Watier H (2016) Eculizumab epitope on complement C5: progress towards a better understanding of the mechanism of action. Mol Immunol 77:126–131. doi: 10.1016/j.molimm.2016.07.016 CrossRefPubMedGoogle Scholar
  69. 69.
    Podack ER (1984) Molecular composition of the tubular structure of the membrane attack complex of complement. J Biol Chem 259(13):8641–8647PubMedGoogle Scholar
  70. 70.
    Morgan BP (2016) The membrane attack complex as an inflammatory trigger. Immunobiology 221(6):747–751. doi: 10.1016/j.imbio.2015.04.006 CrossRefPubMedGoogle Scholar
  71. 71.
    Niculescu F, Badea T, Rus H (1999) Sublytic C5b-9 induces proliferation of human aortic smooth muscle cells: role of mitogen activated protein kinase and phosphatidylinositol 3-kinase. Atherosclerosis 142(1):47–56CrossRefPubMedGoogle Scholar
  72. 72.
    Sharp TH, Koster AJ, Gros P (2016) Heterogeneous MAC initiator and pore structures in a lipid bilayer by phase-plate Cryo-electron tomography. Cell Rep 15(1):1–8. doi: 10.1016/j.celrep.2016.03.002 CrossRefPubMedGoogle Scholar
  73. 73.
    Shepard LA, Heuck AP, Hamman BD, Rossjohn J, Parker MW, Ryan KR, Johnson AE, Tweten RK (1998) Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium Perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. Biochemistry 37(41):14563–14574. doi: 10.1021/bi981452f CrossRefPubMedGoogle Scholar
  74. 74.
    Hadders MA, Beringer DX, Gros P (2007) Structure of C8alpha-MACPF reveals mechanism of membrane attack in complement immune defense. Science 317(5844):1552–1554. doi: 10.1126/science.1147103 CrossRefPubMedGoogle Scholar
  75. 75.
    Bubeck D (2014) The making of a macromolecular machine: assembly of the membrane attack complex. Biochemistry 53(12):1908–1915. doi: 10.1021/bi500157z CrossRefPubMedGoogle Scholar
  76. 76.
    Sandoval A, Ai R, Ostresh JM, Ogata RT (2000) Distal recognition site for classical pathway convertase located in the C345C/netrin module of complement component C5. J Immunol 165(2):1066–1073CrossRefPubMedGoogle Scholar
  77. 77.
    Kolb WP, Muller-Eberhard HJ (1975) The membrane attack mechanism of complement. Isolation and subunit composition of the C5b-9 complex. J Exp Med 141(4):724–735PubMedGoogle Scholar
  78. 78.
    Cooper NR, Muller-Eberhard HJ (1970) The reaction mechanism of human C5 in immune hemolysis. J Exp Med 132(4):775–793CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    DiScipio RG (1981) The conversion of human complement component C5 into fragment C5b by the alternative-pathway C5 convertase. Biochem J 199(3):497–504CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Brodeur JP, Ruddy S, Schwartz LB, Moxley G (1991) Synovial fluid levels of complement SC5b-9 and fragment bb are elevated in patients with rheumatoid arthritis. Arthritis Rheum 34(12):1531–1537CrossRefPubMedGoogle Scholar
  81. 81.
    Chiu YY, Nisihara RM, Wurzner R, Kirschfink M, de Messias-Reason IJ (1998) SC5b-9 is the most sensitive marker in assessing disease activity in Brazilian SLE patients. J Investig Allergol Clin Immunol 8(4):239–244PubMedGoogle Scholar
  82. 82.
    Moen O, Fosse E, Brockmeier V, Andersson C, Mollnes TE, Hogasen K, Venge P (1995) Disparity in blood activation by two different heparin-coated cardiopulmonary bypass systems. Ann Thorac Surg 60(5):1317–1323CrossRefPubMedGoogle Scholar
  83. 83.
    Podack ER, Muller-Eberhard HJ (1980) SC5b-9 complex of complement: formation of the dimeric membrane attack complex by removal of S-protein. J Immunol 124(4):1779–1783PubMedGoogle Scholar
  84. 84.
    Stein JM, Luzio JP (1991) Ectocytosis caused by sublytic autologous complement attack on human neutrophils. The sorting of endogenous plasma-membrane proteins and lipids into shed vesicles. Biochem J 274(Pt 2):381–386CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Morgan BP, Walters D, Serna M, Bubeck D (2016) Terminal complexes of the complement system: new structural insights and their relevance to function. Immunol Rev 274(1):141–151. doi: 10.1111/imr.12461 CrossRefPubMedGoogle Scholar
  86. 86.
    Leung C, Dudkina NV, Lukoyanova N, Hodel AW, Farabella I, Pandurangan AP, Jahan N, Pires Damaso M, Osmanovic D, Reboul CF, Dunstone MA, Andrew PW, Lonnen R, Topf M, Saibil HR, Hoogenboom BW (2014) Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin. eLife 3:e04247. doi: 10.7554/eLife.04247 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Metkar SS, Marchioretto M, Antonini V, Lunelli L, Wang B, Gilbert RJ, Anderluh G, Roth R, Pooga M, Pardo J, Heuser JE, Serra MD, Froelich CJ (2015) Perforin oligomers form arcs in cellular membranes: a locus for intracellular delivery of granzymes. Cell Death Differ 22(1):74–85. doi: 10.1038/cdd.2014.110 CrossRefPubMedGoogle Scholar
  88. 88.
    Hu VW, Esser AF, Podack ER, Wisnieski BJ (1981) The membrane attack mechanism of complement: photolabeling reveals insertion of terminal proteins into target membrane. J Immunol 127(1):380–386PubMedGoogle Scholar
  89. 89.
    Saifuddin M, Hedayati T, Atkinson JP, Holguin MH, Parker CJ, Spear GT (1997) Human immunodeficiency virus type 1 incorporates both glycosyl phosphatidylinositol-anchored CD55 and CD59 and integral membrane CD46 at levels that protect from complement-mediated destruction. J Gen Virol 78(Pt 8):1907–1911. doi: 10.1099/0022-1317-78-8-1907 CrossRefPubMedGoogle Scholar
  90. 90.
    Spear GT, Lurain NS, Parker CJ, Ghassemi M, Payne GH, Saifuddin M (1995) Host cell-derived complement control proteins CD55 and CD59 are incorporated into the virions of two unrelated enveloped viruses. Human T cell leukemia/lymphoma virus type I (HTLV-I) and human cytomegalovirus (HCMV). J Immunol 155(9):4376–4381PubMedGoogle Scholar
  91. 91.
    Johnson S, Brooks NJ, Smith RA, Lea SM, Bubeck D (2013) Structural basis for recognition of the pore-forming toxin intermedilysin by human complement receptor CD59. Cell Rep 3(5):1369–1377. doi: 10.1016/j.celrep.2013.04.029 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Wickham SE, Hotze EM, Farrand AJ, Polekhina G, Nero TL, Tomlinson S, Parker MW, Tweten RK (2011) Mapping the intermedilysin-human CD59 receptor interface reveals a deep correspondence with the binding site on CD59 for complement binding proteins C8alpha and C9. J Biol Chem 286(23):20952–20962. doi: 10.1074/jbc.M111.237446 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Biesecker G, Lachmann P, Henderson R (1993) Structure of complement poly-C9 determined in projection by cryo-electron microscopy and single particle analysis. Mol Immunol 30(15):1369–1382CrossRefPubMedGoogle Scholar
  94. 94.
    Dudkina NV, Spicer BA, Reboul CF, Conroy PJ, Lukoyanova N, Elmlund H, Law RH, Ekkel SM, Kondos SC, Goode RJ, Ramm G, Whisstock JC, Saibil HR, Dunstone MA (2016) Structure of the poly-C9 component of the complement membrane attack complex. Nat Commun 7:10588. doi: 10.1038/ncomms10588 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Farkas I, Baranyi L, Ishikawa Y, Okada N, Bohata C, Budai D, Fukuda A, Imai M, Okada H (2002) CD59 blocks not only the insertion of C9 into MAC but inhibits ion channel formation by homologous C5b-8 as well as C5b-9. J Physiol 539(Pt 2):537–545CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Meri S, Morgan BP, Davies A, Daniels RH, Olavesen MG, Waldmann H, Lachmann PJ (1990) Human protectin (CD59), an 18,000-20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology 71(1):1–9PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Microbiology I (Immunology)Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12)MadridSpain
  2. 2.Centro de Investigaciones BiológicasConsejo Superior de Investigaciones CientíficasMadridSpain
  3. 3.Structural Biology Programme, CNIOMadridSpain
  4. 4.Ciber de Enfermedades RarasMadridSpain

Personalised recommendations