Seminars in Immunopathology

, Volume 39, Issue 2, pp 225–239 | Cite as

The development of dendritic cell vaccine-based immunotherapies for glioblastoma

  • David A. ReardonEmail author
  • Duane A. Mitchell


In this review, we focus on the biologic advantages of dendritic cell-based vaccinations as a therapeutic strategy for cancer as well as preclinical and emerging clinical data associated with such approaches for glioblastoma patients.


Dendritic Cell Tumor Antigen Granulocyte Macrophage Colony Stimulate Factor Tumor Lysate Glioblastoma Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with ethical standards

Conflict of interest (current and at time of the research):

David A. Reardon received honoraria from and has a consulting or advisory role with Abbvie, Bristol Myers Squibb, Cavion, Celldex, Inovio, Juno Pharmaceuticals, Merck, Novartis, Roche/Genentech, Amgen, Novocure, Oxigene, Regeneron, and Stemline Therapeutics; is involved in speakers’ bureaus with Roche and Merck; and received research funding from Incyte, Midatech, and Celldex.

Duane A. Mitchell received honoraria from and has a consulting or advisory role with Tocagen, Inc.; has patents that have been licensed to the Celldex Therapeutics, Inc.; and received research funding from Immunomic Technologies, Inc.


  1. 1.
    Ostrom QT et al (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro-Oncology 15(Suppl 2):ii1–i56PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Stupp R et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466PubMedCrossRefGoogle Scholar
  3. 3.
    Fine HA (2015) New strategies in glioblastoma: exploiting the new biology. Clin Cancer Res 21(9):1984–1988PubMedCrossRefGoogle Scholar
  4. 4.
    Reardon DA, Wen PY (2015) Glioma in 2014: unravelling tumour heterogeneity-implications for therapy. Nat Rev Clin Oncol 12(2):69–70PubMedCrossRefGoogle Scholar
  5. 5.
    Gilbert MR et al (2013) Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 31(32):4085–4091PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Gilbert MR et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370(8):699–708PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Chinot OL et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370(8):709–722PubMedCrossRefGoogle Scholar
  8. 8.
    Stupp R et al (2014) Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 15(10):1100–1108PubMedCrossRefGoogle Scholar
  9. 9.
    Kamiya-Matsuoka C, Gilbert MR (2015) Treating recurrent glioblastoma: an update. CNS Oncol 4(2):91–104PubMedCrossRefGoogle Scholar
  10. 10.
    Cohen MH et al (2009) FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist 14(11):1131–1138PubMedCrossRefGoogle Scholar
  11. 11.
    Shahar T et al (2012) The impact of enrollment in clinical trials on survival of patients with glioblastoma. J Clin Neurosci 19(11):1530–1534PubMedCrossRefGoogle Scholar
  12. 12.
    Woehrer A, Bauchet L, Barnholtz-Sloan JS (2014) Glioblastoma survival: has it improved? Evidence from population-based studies. Curr Opin Neurol 27(6):666–674PubMedGoogle Scholar
  13. 13.
    Rouse C et al (2016) Years of potential life lost for brain and CNS tumors relative to other cancers in adults in the United States, 2010. Neuro-Oncology 18(1):70–77PubMedCrossRefGoogle Scholar
  14. 14.
    Coley WB (1893) The treatment of malignant tumors by repeated inoculations of erysipelas, with a report of ten original cases. Am J Med Sci 105:487–511CrossRefGoogle Scholar
  15. 15.
    Kantoff PW et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422PubMedCrossRefGoogle Scholar
  16. 16.
    Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Robert C et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372(4):320–330PubMedCrossRefGoogle Scholar
  18. 18.
    Hamid O et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369(2):134–144PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Garon EB et al. 2015 Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J MedGoogle Scholar
  20. 20.
    Motzer RJ et al (2015) Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol 33(13):1430–1437PubMedCrossRefGoogle Scholar
  21. 21.
    Andtbacka RHI et al. 2013 OPTiM: A randomized phase III trial of talimogene laherparepvec (T-VEC) versus subcutaneous (SC) granulocyte-macrophage colony-stimulating factor (GM-CSF) for the treatment (tx) of unresected stage IIIB/C and IV melanoma. in 2013 American society of clinical oncology. Chicago, Ill: ASCOGoogle Scholar
  22. 22.
    Kaufman HL et al (2010) Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 17(3):718–730PubMedCrossRefGoogle Scholar
  23. 23.
    Medawar P (1948) Immunity to hemologous grafted skin: III. The fate of skin hemografts transplanted to the brain, to subcutaneous tissue, and toe the anterior chamber of the eye. Br J Exp Pathol 29:58–69PubMedPubMedCentralGoogle Scholar
  24. 24.
    Dunn GP, Okada H (2015) Principles of immunology and its nuances in the central nervous system. Neuro-Oncology 17(Suppl 7):vii3–vii8PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Fecci PE, Heimberger AB, Sampson JH (2014) Immunotherapy for primary brain tumors: no longer a matter of privilege. Clin Cancer Res 20(22):5620–5629PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Schraml BU (2015) And C. Reis e Sousa, Defining dendritic cells. Curr Opin Immunol 32:13–20PubMedCrossRefGoogle Scholar
  27. 27.
    Steinman RM, Nussenzweig MC (1980) Dendritic cells: features and functions. Immunol Rev 53:127–147PubMedCrossRefGoogle Scholar
  28. 28.
    Norbury CC, Sigal LJ (2003) Cross priming or direct priming: is that really the question? Curr Opin Immunol 15(1):82–88PubMedCrossRefGoogle Scholar
  29. 29.
    Heath WR, Carbone FR (1999) Cytotoxic T lymphocyte activation by cross-priming. Curr Opin Immunol 11(3):314–318PubMedCrossRefGoogle Scholar
  30. 30.
    van der Bruggen P et al (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254(5038):1643–1647PubMedCrossRefGoogle Scholar
  31. 31.
    De Plaen E et al (1988) Immunogenic (tum-) variants of mouse tumor P815: cloning of the gene of tum- antigen P91A and identification of the tum- mutation. Proc Natl Acad Sci U S A 85(7):2274–2278PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Huang AY et al (1994) Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264(5161):961–965PubMedCrossRefGoogle Scholar
  33. 33.
    Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137(5):1142–1162PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Maroof A (2001) Generation of murine bone-marrow-derived dendritic cells. Methods Mol Med 64:191–198PubMedGoogle Scholar
  35. 35.
    Porgador A, Gilboa E (1995) Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes. J Exp Med 182(1):255–260PubMedCrossRefGoogle Scholar
  36. 36.
    Flamand V et al (1994) Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo. Eur J Immunol 24(3):605–610PubMedCrossRefGoogle Scholar
  37. 37.
    Cohen PJ et al (1994) Murine epidermal Langerhans cells and splenic dendritic cells present tumor-associated antigens to primed T cells. Eur J Immunol 24(2):315–319PubMedCrossRefGoogle Scholar
  38. 38.
    Shimizu J et al (1989) Induction of tumor-specific in vivo protective immunity by immunization with tumor antigen-pulsed antigen-presenting cells. J Immunol 142(3):1053–1059PubMedGoogle Scholar
  39. 39.
    Zitvogel L et al (1996) Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med 183(1):87–97PubMedCrossRefGoogle Scholar
  40. 40.
    Mayordomo JI et al (1995) Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1(12):1297–1302PubMedCrossRefGoogle Scholar
  41. 41.
    Porgador A, Snyder D, Gilboa E (1996) Induction of antitumor immunity using bone marrow-generated dendritic cells. J Immunol 156(8):2918–2926PubMedGoogle Scholar
  42. 42.
    Ashley DM et al (1997) Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med 186(7):1177–1182PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Heimberger AB et al (2000) Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. J Neuroimmunol 103(1):16–25PubMedCrossRefGoogle Scholar
  44. 44.
    Fecci PE et al (2007) Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 13(7):2158–2167PubMedCrossRefGoogle Scholar
  45. 45.
    Kuwashima N et al (2005) Delivery of dendritic cells engineered to secrete IFN-alpha into central nervous system tumors enhances the efficacy of peripheral tumor cell vaccines: dependence on apoptotic pathways. J Immunol 175(4):2730–2740PubMedCrossRefGoogle Scholar
  46. 46.
    Prins RM, Odesa SK, Liau LM (2003) Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res 63(23):8487–8491PubMedGoogle Scholar
  47. 47.
    Batich KA, Swartz AM, Sampson JH (2015) Enhancing dendritic cell-based vaccination for highly aggressive glioblastoma. Expert Opin Biol Ther 15(1):79–94PubMedCrossRefGoogle Scholar
  48. 48.
    Kim CH et al (2007) Enhanced antitumour immunity by combined use of temozolomide and TAT-survivin pulsed dendritic cells in a murine glioma. Immunology 122(4):615–622PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Bigner DD, Pitts OM, Wikstrand CJ (1981) Induction of lethal experimental allergic encephalomyelitis in nonhuman primates and guinea pigs with human glioblastoma multiforme tissue. J Neurosurg 55(1):32–42PubMedCrossRefGoogle Scholar
  50. 50.
    Yeh S et al (2009) Ocular and systemic autoimmunity after successful tumor-infiltrating lymphocyte immunotherapy for recurrent, metastatic melanoma. Ophthalmology 116(5):981–989 e1PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Overwijk WW et al (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198(4):569–580PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Phan GQ et al (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A 100(14):8372–8377PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kawakami Y, Robbins PF, Rosenberg SA (1996) Human melanoma antigens recognized by T lymphocytes. Keio J Med 45(2):100–108PubMedCrossRefGoogle Scholar
  54. 54.
    Dittel BN et al (1999) Presentation of the self antigen myelin basic protein by dendritic cells leads to experimental autoimmune encephalomyelitis. J Immunol 163(1):32–39PubMedGoogle Scholar
  55. 55.
    Flores C et al (2015) Novel role of hematopoietic stem cells in immunologic rejection of malignant gliomas. Oncoimmunology 4(3):e994374PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Vu Manh TP et al (2015) Investigating evolutionary conservation of dendritic cell subset identity and functions. Front Immunol 6:260PubMedPubMedCentralGoogle Scholar
  57. 57.
    Anguille S et al (2015) Dendritic cells as pharmacological tools for cancer immunotherapy. Pharmacol Rev 67(4):731–753PubMedCrossRefGoogle Scholar
  58. 58.
    Moiseyenko V et al (2007) Cell technologies in immunotherapy of cancer. Adv Exp Med Biol 601:387–393PubMedCrossRefGoogle Scholar
  59. 59.
    Czerniecki BJ et al (2001) Diverse functional activity of CD83+ monocyte-derived dendritic cells and the implications for cancer vaccines. Crit Rev Immunol 21(1–3):157–178PubMedGoogle Scholar
  60. 60.
    Chen W et al (2000) Dendritic cell-based cancer immunotherapy: potential for treatment of colorectal cancer? J Gastroenterol Hepatol 15(7):698–705PubMedCrossRefGoogle Scholar
  61. 61.
    Abraham RS, Mitchell DA (2016) Gene-modified dendritic cell vaccines for cancer. Cytotherapy 18(11):1446–1455PubMedCrossRefGoogle Scholar
  62. 62.
    Ju X, Clark G, Hart DN (2010) Review of human DC subtypes. Methods Mol Biol 595:3–20PubMedCrossRefGoogle Scholar
  63. 63.
    Hochrein H, O'Keeffe M, Wagner H (2002) Human and mouse plasmacytoid dendritic cells. Hum Immunol 63(12):1103–1110PubMedCrossRefGoogle Scholar
  64. 64.
    Spranger S, Frankenberger B, Schendel DJ (2012) NOD/scid IL-2Rg(null) mice: a preclinical model system to evaluate human dendritic cell-based vaccine strategies in vivo. J Transl Med 10:30PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Inoue M et al (2009) An in vivo model of priming of antigen-specific human CTL by Mo-DC in NOD/Shi-scid IL2rgamma(null) (NOG) mice. Immunol Lett 126(1–2):67–72PubMedCrossRefGoogle Scholar
  66. 66.
    Ashizawa T et al. 2016 Antitumor effect of programmed death-1 (PD-1) blockade in humanized the NOG-MHC double knockout mouse. Clin Cancer ResGoogle Scholar
  67. 67.
    Eggert AA et al (1999) Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 59(14):3340–3345PubMedGoogle Scholar
  68. 68.
    Quillien V et al (2005) Biodistribution of radiolabelled human dendritic cells injected by various routes. Eur J Nucl Med Mol Imaging 32(7):731–741PubMedCrossRefGoogle Scholar
  69. 69.
    Pabst R (2015) Mucosal vaccination by the intranasal route. Nose-associated lymphoid tissue (NALT)-structure, function and species differences. Vaccine 33(36):4406–4413PubMedCrossRefGoogle Scholar
  70. 70.
    Dey M et al (2016) Intranasal oncolytic virotherapy with CXCR4-enhanced stem cells extends survival in mouse model of glioma. Stem Cell Reports 7(3):471–482PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ohlfest JR et al (2013) Vaccine injection site matters: qualitative and quantitative defects in CD8 T cells primed as a function of proximity to the tumor in a murine glioma model. J Immunol 190(2):613–620PubMedCrossRefGoogle Scholar
  72. 72.
    Lesterhuis WJ et al (2011) Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in advanced melanoma patients. Clin Cancer Res 17(17):5725–5735PubMedCrossRefGoogle Scholar
  73. 73.
    Seyfizadeh N et al (2016) Migration of dendritic cells to the lymph nodes and its enhancement to drive anti-tumor responses. Crit Rev Oncol Hematol 107:100–110PubMedCrossRefGoogle Scholar
  74. 74.
    Martin-Fontecha A, Lanzavecchia A, Sallusto F (2009) Dendritic cell migration to peripheral lymph nodes. Handb Exp Pharmacol 188:31–49CrossRefGoogle Scholar
  75. 75.
    Adema GJ et al (2005) Migration of dendritic cell based cancer vaccines: in vivo veritas? Curr Opin Immunol 17(2):170–174PubMedCrossRefGoogle Scholar
  76. 76.
    Mitchell DA et al (2015) Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519(7543):366–369PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Wang X et al (2014) Dendritic cell-based vaccine for the treatment of malignant glioma: a systematic review. Cancer Investig 32(9):451–457CrossRefGoogle Scholar
  78. 78.
    Fecci PE et al (2003) The history, evolution, and clinical use of dendritic cell-based immunization strategies in the therapy of brain tumors. J Neuro-Oncol 64(1–2):161–176Google Scholar
  79. 79.
    Ward JP, Gubin MM, Schreiber RD (2016) The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv Immunol 130:25–74PubMedCrossRefGoogle Scholar
  80. 80.
    Desrichard A, Snyder A, Chan TA (2016) Cancer neoantigens and applications for immunotherapy. Clin Cancer Res 22(4):807–812PubMedCrossRefGoogle Scholar
  81. 81.
    Gubin MM et al (2015) Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest 125(9):3413–3421PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74PubMedCrossRefGoogle Scholar
  83. 83.
    Johanns TM et al (2016) Endogenous neoantigen-specific CD8 T cells identified in two glioblastoma models using a cancer immunogenomics approach. Cancer Immunol Res 4(12):1007–1015PubMedCrossRefGoogle Scholar
  84. 84.
    Solomos AC, Rall GF (2016) Get it through your thick head: emerging principles in neuroimmunology and neurovirology redefine central nervous system “immune privilege”. ACS Chem Neurosci 7(4):435–441PubMedCrossRefGoogle Scholar
  85. 85.
    Louveau A et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Kleine TO (2015) Cellular immune surveillance of central nervous system bypasses blood-brain barrier and blood-cerebrospinal-fluid barrier: revealed with the new Marburg cerebrospinal-fluid model in healthy humans. Cytometry A 87(3):227–243PubMedCrossRefGoogle Scholar
  87. 87.
    Fischer HG, Reichmann G (2001) Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol 166(4):2717–2726PubMedCrossRefGoogle Scholar
  88. 88.
    Fischer HG, Bonifas U, Reichmann G (2000) Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J Immunol 164(9):4826–4834PubMedCrossRefGoogle Scholar
  89. 89.
    Oh T et al (2014) Immunocompetent murine models for the study of glioblastoma immunotherapy. J Transl Med 12:107PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Gan HK et al (2012) Assumptions of expected benefits in randomized phase III trials evaluating systemic treatments for cancer. J Natl Cancer Inst 104(8):590–598PubMedCrossRefGoogle Scholar
  91. 91.
    Amiri-Kordestani L, Fojo T (2012) Why do phase III clinical trials in oncology fail so often? J Natl Cancer Inst 104(8):568–569PubMedCrossRefGoogle Scholar
  92. 92.
    Guermonprez P et al (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20:621–667PubMedCrossRefGoogle Scholar
  93. 93.
    Kastenmuller W et al (2014) Dendritic cell-targeted vaccines—hope or hype? Nat Rev Immunol 14(10):705–711PubMedCrossRefGoogle Scholar
  94. 94.
    Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12(4):265–277PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Patel AP et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190):1396–1401PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Storkus WJ et al (1993) Identification of T-cell epitopes: rapid isolation of class I- presented peptides from viable cells by mild acid elution. JImmunother 14(2):94–103CrossRefGoogle Scholar
  97. 97.
    Liau LM et al (2000) Treatment of a patient by vaccination with autologous dendritic cells pulsed with allogeneic major histocompatibility complex class I-matched tumor peptides. Case report. Neurosurg Focus 9(6):e8PubMedCrossRefGoogle Scholar
  98. 98.
    Yu JS et al (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61(3):842–847PubMedGoogle Scholar
  99. 99.
    Liau LM et al (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11(15):5515–5525PubMedCrossRefGoogle Scholar
  100. 100.
    Yu JS et al (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64(14):4973–4979PubMedCrossRefGoogle Scholar
  101. 101.
    Wheeler CJ et al (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68(14):5955–5964PubMedCrossRefGoogle Scholar
  102. 102.
    Rutkowski S et al (2004) Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 91(9):1656–1662PubMedPubMedCentralGoogle Scholar
  103. 103.
    De Vleeschouwer S et al (2008) Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clinical cancer research : an official journal of the American Association for Cancer Research 14(10):3098–3104CrossRefGoogle Scholar
  104. 104.
    Hunn MK et al (2015) Dendritic cell vaccination combined with temozolomide retreatment: results of a phase I trial in patients with recurrent glioblastoma multiforme. J Neuro-Oncol 121(2):319–329CrossRefGoogle Scholar
  105. 105.
    Yamanaka R et al (2003) Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 89(7):1172–1179PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Yamanaka R et al (2005) Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 11(11):4160–4167PubMedCrossRefGoogle Scholar
  107. 107.
    Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996PubMedCrossRefGoogle Scholar
  108. 108.
    Ardon H et al (2010) Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neuro-Oncol 99(2):261–272CrossRefGoogle Scholar
  109. 109.
    Ardon H et al. 2012 Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 phase I/II trial. Cancer immunology, immunotherapy: CIIGoogle Scholar
  110. 110.
    Fadul CE et al (2011) Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J Immunother 34(4):382–389PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Vik-Mo EO et al (2013) Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother 62(9):1499–1509PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Rich JN (2007) Cancer stem cells in radiation resistance. Cancer Res 67(19):8980–8984PubMedCrossRefGoogle Scholar
  113. 113.
    Bao S et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760PubMedCrossRefGoogle Scholar
  114. 114.
    Bao S et al (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66(16):7843–7848PubMedCrossRefGoogle Scholar
  115. 115.
    Mirimanoff RO et al (2006) Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. J Clin Oncol 24(16):2563–2569PubMedCrossRefGoogle Scholar
  116. 116.
    Li J et al (2011) Validation and simplification of the radiation therapy oncology group recursive partitioning analysis classification for glioblastoma. Int J Radiat Oncol Biol Phys 81(3):623–630PubMedCrossRefGoogle Scholar
  117. 117.
    De Vleeschouwer S et al. 2012 Stratification according to HGG-IMMUNO RPA model predicts outcome in a large group of patients with relapsed malignant glioma treated by adjuvant postoperative dendritic cell vaccination. Cancer immunology, immunotherapy : CIIGoogle Scholar
  118. 118.
    Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173PubMedCrossRefGoogle Scholar
  119. 119.
    Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Prins RM et al (2011) Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research 17(6):1603–1615CrossRefGoogle Scholar
  121. 121.
    Fong, B., et al., Monitoring of regulatory T cell frequencies and expression of CTLA-4 on T cells, before and after DC vaccination, can predict survival in GBM patients. PLoS One, 2012. 7(4): p. e32614.Google Scholar
  122. 122.
    Everson RG et al (2014) Cytokine responsiveness of CD8(+) T cells is a reproducible biomarker for the clinical efficacy of dendritic cell vaccination in glioblastoma patients. J Immunother Cancer 2:10PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Pellegatta, S., et al., The natural killer cell response and tumor debulking are associated with prolonged survival in recurrent glioblastoma patients receiving dendritic cells loaded with autologous tumor lysates. Oncoimmunology, 2013. 2(3): p. e23401.Google Scholar
  124. 124.
    Humphrey PA et al (1990) Anti-synthetic peptide antibody reaching at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc Natl Acad Sci U S A 87:4207–42011PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Wong AJ et al (1987) Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proceedings of the National Academy of Sciences of the USA 84(19):6899–6903PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Chu CT et al (1997) Receptor dimerization is not a factor in the signalling activity of a transforming variant epidermal growth factor receptor (EGFRvIII). Biochem J 324(Pt 3):855–861PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Li B et al (2004) Mutant epidermal growth factor receptor displays increased signaling through the phosphatidylinositol-3 kinase/AKT pathway and promotes radioresistance in cells of astrocytic origin. Oncogene 23(26):4594–4602PubMedCrossRefGoogle Scholar
  128. 128.
    Sampson JH et al (2009) An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther 8(10):2773–2779PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Sampson JH et al (2011) Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro-Oncology 13(3):324–333PubMedCrossRefGoogle Scholar
  130. 130.
    Heimberger AB et al (2008) Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: case study. Neuro-Oncology 10(1):98–103PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Sampson JH et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 28(31):4722–4729CrossRefGoogle Scholar
  132. 132.
    Sakai K et al (2015) Dendritic cell-based immunotherapy targeting Wilms' tumor 1 in patients with recurrent malignant glioma. J Neurosurg 123(4):989–997PubMedCrossRefGoogle Scholar
  133. 133.
    Dziurzynski K et al (2012) Consensus on the role of human cytomegalovirus in glioblastoma. Neuro-Oncology 14(3):246–255PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Okada H et al (2011) Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 29(3):330–336PubMedCrossRefGoogle Scholar
  135. 135.
    Akiyama Y et al (2012) Alpha-type-1 polarized dendritic cell-based vaccination in recurrent high-grade glioma: a phase I clinical trial. BMC Cancer 12:623PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Phuphanich S et al (2012) Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer immunology, immunotherapy : CII 62(1):125–135PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Dubensky TW Jr, Reed SG (2010) Adjuvants for cancer vaccines. Semin Immunol 22(3):155–161PubMedCrossRefGoogle Scholar
  138. 138.
    Le DT, Pardoll DM, Jaffee EM (2010) Cellular vaccine approaches. Cancer J 16(4):304–310PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Mitchell DA et al (2015) Severe adverse immunologic reaction in a patient with glioblastoma receiving autologous dendritic cell vaccines combined with GM-CSF and dose-intensified temozolomide. Cancer Immunol Res 3(4):320–325PubMedCrossRefGoogle Scholar
  140. 140.
    Nduom EK, Weller M, Heimberger AB (2015) Immunosuppressive mechanisms in glioblastoma. Neuro-Oncology 17(Suppl 7):vii9–vii14PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33(17):1974–1982PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Reardon DA et al (2015) Immunotherapy for neuro-oncology: the critical rationale for combinatorial therapy. Neuro-Oncology 17(Suppl 7):vii32–vii40PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Center for Neuro-OncologyDana-Farber Cancer InstituteBostonUSA
  2. 2.Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain InstituteUniversity of FloridaGainesvilleUSA

Personalised recommendations