Advertisement

Seminars in Immunopathology

, Volume 39, Issue 3, pp 283–294 | Cite as

Potential importance of B cells in aging and aging-associated neurodegenerative diseases

  • Arya Biragyn
  • Maria Aliseychik
  • Evgeny Rogaev
Review

Abstract

Our understanding of B cells as merely antibody producers is slowly changing. Alone or in concert with antibody, they control outcomes of seemingly different diseases such as cancer, rheumatoid arthritis, diabetes, and multiple sclerosis. While their role in activation of effector immune cells is beneficial in cancer but bad in autoimmune diseases, their immunosuppressive and regulatory subsets (Bregs) inhibit autoimmune and anticancer responses. These pathogenic and suppressive functions are not static and appear to be regulated by the nature and strength of inflammation. Although aging increases inflammation and changes the composition and function of B cells, surprisingly, little is known whether the change affects aging-associated neurodegenerative disease, such as Alzheimer’s disease (AD). Here, by analyzing B cells in cancer and autoimmune and neuroinflammatory diseases, we elucidate their potential importance in AD and other aging-associated neuroinflammatory diseases.

Keywords

B-cell Bregs Alzheimer’s disease Neurodegeneration 

Notes

Acknowledgments

This work was funded by Intramural Program of the National Institute on Aging, National Institutes of Health, USA, and Russian Science Foundation grant # 14-15-00077, Center for Brain Neurobiology and Neurogenetics, Russia.

Compliance with ethical standards

Conflict of interest

The authors do not have any conflict of interest.

Reference

  1. 1.
    Xie J, Brayne C, Matthews FE (2008) Survival times in people with dementia: analysis from population based cohort study with 14 year follow-up. BMJ 336:258–262PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Golde TE, Dickson D, Hutton M (2006) Filling the gaps in the abeta cascade hypothesis of Alzheimer’s disease. Curr Alzheimer Res 3:421–430PubMedCrossRefGoogle Scholar
  4. 4.
    Doecke JD, Laws SM, Faux NG et al (2012) Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch Neurol 69:1318–1325PubMedCrossRefGoogle Scholar
  5. 5.
    Ray S, Britschgi M, Herbert C et al (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362PubMedCrossRefGoogle Scholar
  6. 6.
    Clark IA, Vissel B (2015) Amyloid beta: one of three danger-associated molecules that are secondary inducers of the proinflammatory cytokines that mediate Alzheimer’s disease. Br J Pharmacol 172:3714–3727PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Heneka MT, Golenbock DT, Latz E (2015) Innate immunity in Alzheimer’s disease. Nat Immunol 16:229–236PubMedCrossRefGoogle Scholar
  8. 8.
    Mildner A, Schlevogt B, Kierdorf K et al (2011) Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer’s disease. J Neurosci 31:11159–11171PubMedCrossRefGoogle Scholar
  9. 9.
    Aloisi F, Penna G, Cerase J, Menendez Iglesias B, Adorini L (1997) IL-12 production by central nervous system microglia is inhibited by astrocytes. J Immunol 159:1604–1612PubMedGoogle Scholar
  10. 10.
    El Khoury J, Toft M, Hickman SE et al (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432–438PubMedCrossRefGoogle Scholar
  11. 11.
    Hawkes CA, McLaurin J (2009) Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy. Proc Natl Acad Sci U S A 106:1261–1266PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Solerte SB, Cravello L, Ferrari E, Fioravanti M (2000) Overproduction of IFN-gamma and TNF-alpha from natural killer (NK) cells is associated with abnormal NK reactivity and cognitive derangement in Alzheimer’s disease. Ann N Y Acad Sci 917:331–340PubMedCrossRefGoogle Scholar
  13. 13.
    Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 100:13632–13637PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765PubMedCrossRefGoogle Scholar
  15. 15.
    Liu Q, Xin W, He P et al (2014) Interleukin-17 inhibits adult hippocampal neurogenesis. Sci Rep. 4:7554PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Taylor JM, Minter MR, Newman AG, Zhang M, Adlard PA, Crack PJ (2014) Type-1 interferon signaling mediates neuro-inflammatory events in models of Alzheimer’s disease. Neurobiol Aging 35:1012–1023PubMedCrossRefGoogle Scholar
  17. 17.
    Meda L, Cassatella MA, Szendrei GI et al (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374:647–650PubMedCrossRefGoogle Scholar
  18. 18.
    Browne TC, McQuillan K, McManus RM, O’Reilly JA, Mills KH, Lynch MA (2013) IFN-gamma production by amyloid beta-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. J Immunol 190:2241–2251PubMedCrossRefGoogle Scholar
  19. 19.
    Vom Berg J, Prokop S, Miller KR et al (2012) Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat Med 18:1812–1819PubMedCrossRefGoogle Scholar
  20. 20.
    Bettelli E, Nicholson LB, Kuchroo VK (2003) IL-10, a key effector regulatory cytokine in experimental autoimmune encephalomyelitis. J Autoimmun 20:265–267PubMedCrossRefGoogle Scholar
  21. 21.
    Brionne TC, Tesseur I, Masliah E, Wyss-Coray T (2003) Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40:1133–1145PubMedCrossRefGoogle Scholar
  22. 22.
    Wyss-Coray T, Lin C, Yan F et al (2001) TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7:612–618PubMedCrossRefGoogle Scholar
  23. 23.
    Flanders KC, Ludecke G, Engels S et al (1991) Localization and actions of transforming growth factor-beta s in the embryonic nervous system. Development 113:183–191PubMedGoogle Scholar
  24. 24.
    Flanders KC, Lippa CF, Smith TW, Pollen DA, Sporn MB (1995) Altered expression of transforming growth factor-beta in Alzheimer’s disease. Neurology 45:1561–1569PubMedCrossRefGoogle Scholar
  25. 25.
    Tichauer JE, von Bernhardi R (2012) Transforming growth factor-beta stimulates beta amyloid uptake by microglia through Smad3-dependent mechanisms. J Neurosci Res 90:1970–1980PubMedCrossRefGoogle Scholar
  26. 26.
    Ma D, Doi Y, Jin S et al (2012) TGF-beta induced by interleukin-34-stimulated microglia regulates microglial proliferation and attenuates oligomeric amyloid beta neurotoxicity. Neurosci Lett 529:86–91PubMedCrossRefGoogle Scholar
  27. 27.
    Colonna M, Wang Y (2016) TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci. 17:201–207PubMedCrossRefGoogle Scholar
  28. 28.
    Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260PubMedCrossRefGoogle Scholar
  29. 29.
    Kunis G, Baruch K, Rosenzweig N et al (2013) IFN-gamma-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain 136:3427–3440PubMedCrossRefGoogle Scholar
  30. 30.
    Radjavi A, Smirnov I, Kipnis J (2014) Brain antigen-reactive CD4+ T cells are sufficient to support learning behavior in mice with limited T cell repertoire. Brain Behav Immun 35:58–63PubMedCrossRefGoogle Scholar
  31. 31.
    Galea I, Bernardes-Silva M, Forse PA, van Rooijen N, Liblau RS, Perry VH (2007) An antigen-specific pathway for CD8 T cells across the blood-brain barrier. J Exp Med 204:2023–2030PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Puntener U, Booth SG, Perry VH, Teeling JL (2012) Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia. J Neuroinflammation 9:146PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Boche D, Zotova E, Weller RO et al (2008) Consequence of abeta immunization on the vasculature of human Alzheimer’s disease brain. Brain : a journal of neurology 131:3299–3310CrossRefGoogle Scholar
  34. 34.
    Gilman S, Koller M, Black RS et al (2005) Clinical effects of abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64:1553–1562PubMedCrossRefGoogle Scholar
  35. 35.
    Yang H, Yang H, Xie Z, Wei L, Bi J (2013) Systemic transplantation of human umbilical cord derived mesenchymal stem cells-educated T regulatory cells improved the impaired cognition in AbetaPPswe/PS1dE9 transgenic mice. PLoS One 8:e69129PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Saresella M, Calabrese E, Marventano I et al (2010) PD1 negative and PD1 positive CD4+ T regulatory cells in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 21:927–938PubMedGoogle Scholar
  37. 37.
    Baruch K, Rosenzweig N, Kertser A, et al. (2015) Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer’s disease pathology. Nature Communications 6Google Scholar
  38. 38.
    Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 16:358–372PubMedCrossRefGoogle Scholar
  39. 39.
    Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E (2008) Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 63:801–808PubMedCrossRefGoogle Scholar
  40. 40.
    Snyder JS, Cameron HA (2012) Could adult hippocampal neurogenesis be relevant for human behavior? Behav Brain Res 227:384–390PubMedCrossRefGoogle Scholar
  41. 41.
    Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476:458–461PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Holmes C, Boche D, Wilkinson D et al (2008) Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223PubMedCrossRefGoogle Scholar
  43. 43.
    Ryan DA, Mastrangelo MA, Narrow WC, Sullivan MA, Federoff HJ, Bowers WJ (2010) Abeta-directed single-chain antibody delivery via a serotype-1 AAV vector improves learning behavior and pathology in Alzheimer’s disease mice. Molecular therapy: the journal of the American Society of Gene Therapy 18:1471–1481CrossRefGoogle Scholar
  44. 44.
    Bombois S, Maurage CA, Gompel M et al (2007) Absence of beta-amyloid deposits after immunization in Alzheimer disease with Lewy body dementia. Arch Neurol 64:583–587PubMedCrossRefGoogle Scholar
  45. 45.
    Morgan D, Diamond DM, Gottschall PE et al (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408:982–985PubMedCrossRefGoogle Scholar
  46. 46.
    Movsesyan N, Ghochikyan A, Mkrtichyan M et al (2008) Reducing AD-like pathology in 3xTg-AD mouse model by DNA epitope vaccine—a novel immunotherapeutic strategy. PLoSONE 3:e2124CrossRefGoogle Scholar
  47. 47.
    Olkhanud PB, Mughal M, Ayukawa K et al (2012) DNA immunization with HBsAg-based particles expressing a B cell epitope of amyloid beta-peptide attenuates disease progression and prolongs survival in a mouse model of Alzheimer’s disease. Vaccine 30:1650–1658PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Marsh SE, Abud EM, Lakatos A et al (2016) The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function. Proc Natl Acad Sci U S A 113:E1316–E1325PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Tomihara K, Shin T, Hurez VJ et al (2012) Aging-associated B7-DC+ B cells enhance anti-tumor immunity via Th1 and Th17 induction. Aging Cell 11:128–138PubMedCrossRefGoogle Scholar
  50. 50.
    Lee-Chang C, Bodogai M, Moritoh K et al (2014) Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood 191:4141–4151Google Scholar
  51. 51.
    Lee-Chang C, Bodogai M, Moritoh K et al (2016) Aging converts innate B1a cells into potent CD8+ T cell inducers. J Immunol 196:3385–3397PubMedCrossRefGoogle Scholar
  52. 52.
    Matsushita T, Yanaba K, Bouaziz JD, Fujimoto M, Tedder TF (2008) Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. JClinInvest 118:3420–3430Google Scholar
  53. 53.
    Shimomura Y, Mizoguchi E, Sugimoto K et al (2008) Regulatory role of B-1 B cells in chronic colitis. IntImmunol 20:729–737CrossRefGoogle Scholar
  54. 54.
    Gisondi P, Sala F, Alessandrini F et al (2014) Mild cognitive impairment in patients with moderate to severe chronic plaque psoriasis. Dermatology 228:78–85PubMedCrossRefGoogle Scholar
  55. 55.
    Driver JA, Beiser A, Au R et al (2012) Inverse association between cancer and Alzheimer’s disease: results from the Framingham heart study. BMJ 344:e1442PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Musicco M, Adorni F, Di Santo S et al (2013) Inverse occurrence of cancer and Alzheimer disease: a population-based incidence study. Neurology 81:322–328PubMedCrossRefGoogle Scholar
  57. 57.
    Kim WK, Alvarez X, Fisher J et al (2006) CD163 identifies perivascular macrophages in normal and viral encephalitic brains and potential precursors to perivascular macrophages in blood. Am J Pathol 168:822–834PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Michaud JP, Bellavance MA, Prefontaine P, Rivest S (2013) Real-time in vivo imaging reveals the ability of monocytes to clear vascular amyloid beta. Cell Rep 5:646–653PubMedCrossRefGoogle Scholar
  59. 59.
    Deane R, Sagare A, Hamm K et al (2005) IgG-assisted age-dependent clearance of Alzheimer’s amyloid beta peptide by the blood-brain barrier neonatal fc receptor. J Neurosci 25:11495–11503PubMedCrossRefGoogle Scholar
  60. 60.
    Mohle L, Mattei D, Heimesaat MM et al (2016) Ly6C(hi) monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep 15:1945–1956PubMedCrossRefGoogle Scholar
  61. 61.
    Perry VH, Cunningham C, Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol. 7:161–167PubMedCrossRefGoogle Scholar
  62. 62.
    Yamamoto M, Kiyota T, Horiba M et al (2007) Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol 170:680–692PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Baruch K, Deczkowska A, David E et al (2014) Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 346:89–93PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12:623–635PubMedCrossRefGoogle Scholar
  65. 65.
    Schwartz M, Baruch K (2014) The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J 33:7–20PubMedCrossRefGoogle Scholar
  66. 66.
    Louveau A, Smirnov I, Keyes TJ et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC (2015) Gut-microbiota-brain Axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther 37:984–995PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Bercik P, Denou E, Collins J et al (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141:599–609 609 e591-593PubMedCrossRefGoogle Scholar
  69. 69.
    Diaz Heijtz R, Wang S, Anuar F et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108:3047–3052PubMedCrossRefGoogle Scholar
  70. 70.
    Mariat D, Firmesse O, Levenez F et al (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:123PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Zwielehner J, Liszt K, Handschur M, Lassl C, Lapin A, Haslberger AG (2009) Combined PCR-DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, Bifidobacteria and Clostridium cluster IV in institutionalized elderly. Exp Gerontol 44:440–446Google Scholar
  72. 72.
    Cattaneo A, Cattane N, Galluzzi S et al (2016) Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 49:60–68PubMedCrossRefGoogle Scholar
  73. 73.
    Man AL, Bertelli E, Rentini S et al (2015) Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clin Sci (Lond) 129:515–527CrossRefGoogle Scholar
  74. 74.
    Kim KA, Jeong JJ, Yoo SY, Kim DH (2016) Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice. BMC Microbiol 16:9PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lucin KM, Wyss-Coray T (2009) Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64:110–122PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ferretti MT, Merlini M, Spani C et al (2016) T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer’s disease-like cerebral amyloidosis. Brain Behav Immun 54:211–225PubMedCrossRefGoogle Scholar
  77. 77.
    Derecki NC, Cardani AN, Yang CH et al (2010) Regulation of learning and memory by meningeal immunity: a key role for IL-4. J Exp Med 207:1067–1080PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25:3219–3228PubMedCrossRefGoogle Scholar
  79. 79.
    Filiano AJ, Xu Y, Tustison NJ et al (2016) Unexpected role of interferon-gamma in regulating neuronal connectivity and social behaviour. Nature 535:425–429PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312PubMedCrossRefGoogle Scholar
  81. 81.
    Jiang Z, Jiang JX, Zhang GX (2014) Macrophages: a double-edged sword in experimental autoimmune encephalomyelitis. Immunol Lett 160:17–22PubMedCrossRefGoogle Scholar
  82. 82.
    Rosser EC, Oleinika K, Tonon S et al (2014) Regulatory B cells are induced by gut microbiota-driven interleukin-1beta and interleukin-6 production. Nat Med 20:1334–1339PubMedCrossRefGoogle Scholar
  83. 83.
    Chen Y, Khanna S, Goodyear CS et al (2009) Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. J Immunol 183:1346–1359PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Baumgarth N (2011) The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol. 11:34–46PubMedCrossRefGoogle Scholar
  85. 85.
    Magri G, Miyajima M, Bascones S et al (2014) Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol 15:354–364PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Puga I, Cols M, Barra CM et al (2012) B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol 13:170–180CrossRefGoogle Scholar
  87. 87.
    Mawuenyega KG, Sigurdson W, Ovod V et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774–1774PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Tarasoff-Conway JM, Carare RO, Osorio RS et al (2015) Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 11:457–470PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Brew BJ, Pemberton L, Blennow K, Wallin A, Hagberg L (2005) CSF amyloid beta 42 and tau levels correlate with AIDS dementia complex. Neurology 65:1490–1492PubMedCrossRefGoogle Scholar
  90. 90.
    Koch S, Larbi A, Derhovanessian E, Ozcelik D, Naumova E, Pawelec G (2008) Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immunity & ageing: I & A 5:6CrossRefGoogle Scholar
  91. 91.
    Lerner A, Yamada T, Miller RA (1989) Pgp-1hi T lymphocytes accumulate with age in mice and respond poorly to concanavalin A. Eur J Immunol 19:977–982PubMedCrossRefGoogle Scholar
  92. 92.
    Guerrettaz LM, Johnson SA, Cambier JC (2008) Acquired hematopoietic stem cell defects determine B-cell repertoire changes associated with aging. Proc Natl Acad Sci U S A 105:11898–11902PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Cancro MP, Allman DM (2005) Connecting the dots: revealing the interactions of lymphocyte development and homeostasis in the immunobiology of aging. Semin Immunol 17:319–320PubMedCrossRefGoogle Scholar
  94. 94.
    Linehan E, Dombrowski Y, Snoddy R, Fallon PG, Kissenpfennig A, Fitzgerald DC (2014) Aging impairs peritoneal but not bone marrow-derived macrophage phagocytosis. Aging Cell 13:699–708PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Stall AM, Farinas MC, Tarlinton DM et al (1988) Ly-1 B-cell clones similar to human chronic lymphocytic leukemias routinely develop in older normal mice and young autoimmune (New Zealand black-related) animals. Proc Natl Acad Sci U S A 85:7312–7316PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Poduslo JF, Curran GL, Berg CT (1994) Macromolecular permeability across the blood-nerve and blood-brain barriers. Proc Natl Acad Sci U S A 91:5705–5709PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Fuller JP, Stavenhagen JB, Teeling JL. (2014) New roles for Fc receptors in neurodegeneration—the impact on immunotherapy for Alzheimer’s disease. Frontiers in Neuroscience. 8Google Scholar
  98. 98.
    Bouras C, Riederer BM, Kovari E, Hof PR, Giannakopoulos P (2005) Humoral immunity in brain aging and Alzheimer’s disease. Brain Res Brain Res Rev 48:477–487PubMedCrossRefGoogle Scholar
  99. 99.
    Deane R, Sagare A, Hamm K et al (2008) apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Investig 118:4002–4013PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Morris A, Moller G (1968) Regulation of cellular antibody synthesis effect of adoptively transferred antibody-producing spleen cells on cellular antibody synthesis. J Immunol 101:439–445PubMedGoogle Scholar
  101. 101.
    Mimouni D, Gdalevich M, Mimouni FB, Grotto I, Eldad A, Shpilberg O (2000) Does immune serum globulin confer protection against skin diseases? Int J Dermatol 39:628–631PubMedCrossRefGoogle Scholar
  102. 102.
    Siragam V, Brinc D, Crow AR, Song S, Freedman J, Lazarus AH (2005) Can antibodies with specificity for soluble antigens mimic the therapeutic effects of intravenous IgG in the treatment of autoimmune disease? J Clin Invest 115:155–160PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Bruhns P, Samuelsson A, Pollard JW, Ravetch JV (2003) Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity 18:573–581PubMedCrossRefGoogle Scholar
  104. 104.
    Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19:275–290PubMedCrossRefGoogle Scholar
  105. 105.
    Siragam V, Crow AR, Brinc D, Song S, Freedman J, Lazarus AH (2006) Intravenous immunoglobulin ameliorates ITP via activating fc gamma receptors on dendritic cells. Nat Med 12:688–692PubMedCrossRefGoogle Scholar
  106. 106.
    Sudduth TL, Greenstein A, Wilcock DM (2013) Intracranial injection of gammagard, a human IVIg, modulates the inflammatory response of the brain and lowers a beta in APP/PS1 mice along a different time course than anti-a beta antibodies. J Neurosci 33:9684–9692PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Knight EM, Gandy S (2014) Immunomodulation and AD—down but not out. J Clin Immunol 34:S70–S73PubMedCrossRefGoogle Scholar
  108. 108.
    Relkin N (2014) Clinical trials of intravenous immunoglobulin for Alzheimer’s disease. J Clin Immunol 34:S74–S79PubMedCrossRefGoogle Scholar
  109. 109.
    Peress NS, Fleit HB, Perillo E, Kuljis R, Pezzullo C (1993) Identification of fc gamma RI, II and III on normal human brain ramified microglia and on microglia in senile plaques in Alzheimer’s disease. J Neuroimmunol 48:71–79PubMedCrossRefGoogle Scholar
  110. 110.
    Cribbs DH, Berchtold NC, Perreau V et al (2012) Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation 9:179PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Orr CF, Rowe DB, Mizuno Y, Mori H, Halliday GM (2005) A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain 128:2665–2674PubMedCrossRefGoogle Scholar
  112. 112.
    Pruss H, Holtje M, Maier N et al (2012) IgA NMDA receptor antibodies are markers of synaptic immunity in slow cognitive impairment. Neurology 78:1743–1753PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Dalmau J, Gleichman AJ, Hughes EG et al (2008) Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 7:1091–1098PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Harris DP, Haynes L, Sayles PC et al (2000) Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 1:475–482PubMedCrossRefGoogle Scholar
  115. 115.
    Martin F, Chan AC (2006) B cell immunobiology in disease: evolving concepts from the clinic. Annu Rev Immunol 24:467–496PubMedCrossRefGoogle Scholar
  116. 116.
    Duddy ME, Alter A, Bar-Or A (2004) Distinct profiles of human B cell effector cytokines: a role in immune regulation? J Immunol 172:3422–3427PubMedCrossRefGoogle Scholar
  117. 117.
    Lenert P, Brummel R, Field EH, Ashman RF (2005) TLR-9 activation of marginal zone B cells in lupus mice regulates immunity through increased IL-10 production. J Clin Immunol 25:29–40PubMedCrossRefGoogle Scholar
  118. 118.
    Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK (2002) Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16:219–230PubMedCrossRefGoogle Scholar
  119. 119.
    Weber MS, Prod’homme T, Patarroyo JC et al (2010) B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann Neurol 68:369–383PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Lanzavecchia A (1990) Receptor-mediated antigen uptake and its effect on antigen presentation to class II-restricted T lymphocytes. Annu Rev Immunol 8:773–793PubMedCrossRefGoogle Scholar
  121. 121.
    Avalos AM, Ploegh HL (2014) Early BCR events and antigen capture, processing, and loading on MHC class II on B cells. Front Immunol 5:92PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Sonoda K-H, Stein-Streilein J (2002) CD1d on antigen-transporting APC and splenic marginal zone B cells promotes NKT cell-dependent tolerance. Eur J Immunol 32:848–857PubMedCrossRefGoogle Scholar
  123. 123.
    Schneider R, Mohebiany AN, Ifergan I et al (2011) B cell-derived IL-15 enhances CD8 T cell cytotoxicity and is increased in multiple sclerosis patients. J Immunol 187:4119–4128PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Kurt-Jones EA, Liano D, HayGlass KA, Benacerraf B, Sy MS, Abbas AK (1988) The role of antigen-presenting B cells in T cell priming in vivo. Studies of B cell-deficient mice. J Immunol 140:3773–3778PubMedGoogle Scholar
  125. 125.
    O’Neill SK, Cao Y, Hamel KM, Doodes PD, Hutas G, Finnegan A (2007) Expression of CD80/86 on B cells is essential for autoreactive T cell activation and the development of arthritis. J Immunol 179:5109–5116PubMedCrossRefGoogle Scholar
  126. 126.
    van Essen D, Kikutani H, Gray D (1995) CD40 ligand-transduced co-stimulation of T cells in the development of helper function. Nature 378:620–623PubMedCrossRefGoogle Scholar
  127. 127.
    Blair PJ, Riley JL, Harlan DM et al (2000) CD40 ligand (CD154) triggers a short-term CD4(+) T cell activation response that results in secretion of immunomodulatory cytokines and apoptosis. J Exp Med 191:651–660PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Olkhanud PB, Damdinsuren B, Bodogai M et al (2011) Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T-regulatory cells. Cancer Res 71:3505–3515PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Hao Y, O’Neill P, Naradikian MS, Scholz JL, Cancro MP (2011) A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 118:1294–1304PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Futagawa T, Akiba H, Kodama T et al (2002) Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells. Int Immunol 14:275–286PubMedCrossRefGoogle Scholar
  131. 131.
    Wang C, Lin GH, McPherson AJ, Watts TH (2009) Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol Rev 229:192–215PubMedCrossRefGoogle Scholar
  132. 132.
    Cooper D, Bansal-Pakala P, Croft M (2002) 4-1BB (CD137) controls the clonal expansion and survival of CD8 T cells in vivo but does not contribute to the development of cytotoxicity. Eur J Immunol 32:521–529PubMedCrossRefGoogle Scholar
  133. 133.
    Watts TH, DeBenedette MA (1999) T cell co-stimulatory molecules other than CD28. Curr Opin Immunol 11:286–293PubMedCrossRefGoogle Scholar
  134. 134.
    Shuford WW, Klussman K, Tritchler DD et al (1997) 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med 186:47–55PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Kim HJ, Lee JS, Kim JD et al (2012) Reverse signaling through the costimulatory ligand CD137L in epithelial cells is essential for natural killer cell-mediated acute tissue inflammation. Proc Natl Acad Sci U S A 109:E13–E22PubMedCrossRefGoogle Scholar
  136. 136.
    Gramaglia I, Cooper D, Miner KT, Kwon BS, Croft M (2000) Co-stimulation of antigen-specific CD4 T cells by 4-1BB ligand. Eur J Immunol 30:392–402PubMedCrossRefGoogle Scholar
  137. 137.
    Bulati M, Buffa S, Martorana A et al (2015) Double negative (IgG + IgD-CD27-) B cells are increased in a cohort of moderate-severe Alzheimer’s disease patients and show a pro-inflammatory trafficking receptor phenotype. J Alzheimers Dis 44:1241–1251PubMedGoogle Scholar
  138. 138.
    Ansel KM, Ngo VN, Hyman PL et al (2000) A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406:309–314PubMedCrossRefGoogle Scholar
  139. 139.
    Corcione A, Casazza S, Ferretti E et al (2004) Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc Natl Acad Sci U S A 101:11064–11069PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Townsend MJ, Monroe JG, Chan AC (2010) B-cell targeted therapies in human autoimmune diseases: an updated perspective. Immunol Rev 237:264–283PubMedCrossRefGoogle Scholar
  141. 141.
    Nicholas MW, Dooley MA, Hogan SL et al (2008) A novel subset of memory B cells is enriched in autoreactivity and correlates with adverse outcomes in SLE. Clin Immunol 126:189–201PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Sellam J, Rouanet S, Hendel-Chavez H et al (2011) Blood memory B cells are disturbed and predict the response to rituximab in patients with rheumatoid arthritis. Arthritis Rheum 63:3692–3701PubMedCrossRefGoogle Scholar
  143. 143.
    Maurer MA, Rakocevic G, Leung CS et al (2012) Rituximab induces sustained reduction of pathogenic B cells in patients with peripheral nervous system autoimmunity. J Clin Invest 122:1393–1402PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Stroopinsky D, Katz T, Rowe JM, Melamed D, Avivi I (2012) Rituximab-induced direct inhibition of T-cell activation. Cancer immunology, immunotherapy : CII. 61:1233–1241PubMedCrossRefGoogle Scholar
  145. 145.
    Cepok S, Rosche B, Grummel V et al (2005) Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain 128:1667–1676PubMedCrossRefGoogle Scholar
  146. 146.
    Piancone F, Saresella M, Marventano I et al (2016) B lymphocytes in multiple sclerosis: Bregs and BTLA/CD272 expressing-CD19+ lymphocytes modulate disease severity. Sci Rep 6:29699PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Carrasco YR, Batista FD (2007) B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27:160–171PubMedCrossRefGoogle Scholar
  148. 148.
    Qi H, Egen JG, Huang AY, Germain RN (2006) Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 312:1672–1676PubMedCrossRefGoogle Scholar
  149. 149.
    Constant S, Schweitzer N, West J, Ranney P, Bottomly K (1995) B lymphocytes can be competent antigen-presenting cells for priming CD4+ T cells to protein antigens in vivo. J Immunol 155:3734–3741PubMedGoogle Scholar
  150. 150.
    Rivera A, Chen CC, Ron N, Dougherty JP, Ron Y (2001) Role of B cells as antigen-presenting cells in vivo revisited: antigen-specific B cells are essential for T cell expansion in lymph nodes and for systemic T cell responses to low antigen concentrations. Int Immunol 13:1583–1593PubMedCrossRefGoogle Scholar
  151. 151.
    Molnarfi N, Schulze-Topphoff U, Weber MS et al (2013) MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. J Exp Med 210:2921–2937PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Bao Y, Cao X. (2014) The immune potential and immunopathology of cytokine-producing B cell subsets: a comprehensive review. Journal of autoimmunityGoogle Scholar
  153. 153.
    Pierson ER, Stromnes IM, Goverman JM (2014) B cells promote induction of experimental autoimmune encephalomyelitis by facilitating reactivation of T cells in the central nervous system. J Immunol 192:929–939PubMedCrossRefGoogle Scholar
  154. 154.
    Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9:393–407PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Doyle KP, Quach LN, Sole M et al (2015) B-lymphocyte-mediated delayed cognitive impairment following stroke. J Neurosci 35:2133–2145PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Desmond DW, Moroney JT, Sano M, Stern Y (2002) Incidence of dementia after ischemic stroke: results of a longitudinal study. Stroke 33:2254–2260PubMedCrossRefGoogle Scholar
  157. 157.
    Mena H, Cadavid D, Rushing EJ (2004) Human cerebral infarct: a proposed histopathologic classification based on 137 cases. Acta Neuropathol 108:524–530PubMedCrossRefGoogle Scholar
  158. 158.
    Shimamura T, Hashimoto K, Sasaki S (1982) Feedback suppression of the immune response in vivo. I. Immune B cells induce antigen-specific suppressor T cells. Cell Immunol 68:104–113PubMedCrossRefGoogle Scholar
  159. 159.
    Wolf SD, Dittel BN, Hardardottir F, Janeway CA Jr (1996) Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J Exp Med 184:2271–2278PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF (2008) A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28:639–650PubMedCrossRefGoogle Scholar
  161. 161.
    Mizoguchi A, Mizoguchi E, Smith RN, Preffer FI, Bhan AK (1997) Suppressive role of B cells in chronic colitis of T cell receptor alpha mutant mice. J Exp Med 186:1749–1756PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Eynon EE, Parker DC (1992) Small B cells as antigen-presenting cells in the induction of tolerance to soluble protein antigens. J Exp Med 175:131–138PubMedCrossRefGoogle Scholar
  163. 163.
    Bennett SR, Carbone FR, Toy T, Miller JF, Heath WR (1998) B cells directly tolerize CD8(+) T cells. J Exp Med 188:1977–1983PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Amu S, Saunders SP, Kronenberg M, Mangan NE, Atzberger A, Fallon PG (2010) Regulatory B cells prevent and reverse allergic airway inflammation via FoxP3-positive T regulatory cells in a murine model. The Journal of allergy and clinical immunology 125:1114–1124.e1118PubMedCrossRefGoogle Scholar
  165. 165.
    Sun JB, Czerkinsky C, Holmgren J (2012) B lymphocytes treated in vitro with antigen coupled to cholera toxin B subunit induce antigen-specific Foxp3(+) regulatory T cells and protect against experimental autoimmune encephalomyelitis. J Immunol 188:1686–1697PubMedCrossRefGoogle Scholar
  166. 166.
    Reichardt P, Dornbach B, Rong S et al (2007) Naive B cells generate regulatory T cells in the presence of a mature immunologic synapse. Blood 110:1519–1529PubMedCrossRefGoogle Scholar
  167. 167.
    Sayi A, Kohler E, Toller IM et al (2011) TLR-2-activated B cells suppress helicobacter-induced preneoplastic gastric immunopathology by inducing T regulatory-1 cells. J Immunol 186:878–890PubMedCrossRefGoogle Scholar
  168. 168.
    Evans JG, Chavez-Rueda KA, Eddaoudi A et al (2007) Novel suppressive function of transitional 2 B cells in experimental arthritis. J Immunol 178:7868–7878PubMedCrossRefGoogle Scholar
  169. 169.
    Ding Q, Yeung M, Camirand G et al (2011) Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J Clin Invest 121:3645–3656PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Sattler S, Ling GS, Xu D et al (2014) IL-10-producing regulatory B cells induced by IL-33 (Breg(IL-33)) effectively attenuate mucosal inflammatory responses in the gut. J Autoimmun 50:107–122PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Wang RX, CR Y, Dambuza IM et al (2014) Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat Med 20:633–641PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Blair PA, Norena LY, Flores-Borja F et al (2010) CD19(+) CD24(hi) CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32:129–140PubMedCrossRefGoogle Scholar
  173. 173.
    Iwata Y, Matsushita T, Horikawa M et al (2011) Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117:530–541PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Kessel A, Haj T, Peri R et al (2012) Human CD19(+) CD25(high) B regulatory cells suppress proliferation of CD4(+) T cells and enhance Foxp3 and CTLA-4 expression in T-regulatory cells. Autoimmun Rev 11:670–677PubMedCrossRefGoogle Scholar
  175. 175.
    Brisslert M, Bokarewa M, Larsson P, Wing K, Collins LV, Tarkowski A (2006) Phenotypic and functional characterization of human CD25+ B cells. Immunology 117:548–557PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    de Andrés C, Tejera-Alhambra M, Alonso B et al (2014) New regulatory CD19(+) CD25(+) B-cell subset in clinically isolated syndrome and multiple sclerosis relapse. Changes after glucocorticoids. J Neuroimmunol 270:37–44PubMedCrossRefGoogle Scholar
  177. 177.
    Schioppa T, Moore R, Thompson RG et al (2011) B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc Natl Acad Sci U S A 108:10662–10667PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Shimabukuro-Vornhagen A, Schlosser HA, Gryschok L et al (2014) Characterization of tumor-associated B-cell subsets in patients with colorectal cancer. Oncotarget 5:4651–4664PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Lindner S, Dahlke K, Sontheimer K et al (2013) Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. Cancer Res 73:2468–2479PubMedCrossRefGoogle Scholar
  180. 180.
    Shi J, Li S, Zhou Y et al (2014) Perioperative changes in peripheral regulatory B cells of patients with esophageal cancer. Mol Med Rep 10:1525–1530PubMedGoogle Scholar
  181. 181.
    Bodogai M, Moritoh K, Lee-Chang C et al (2015) Immunosuppressive and prometastatic functions of myeloid-derived suppressive cells rely upon education from tumor-associated B cells. Cancer Res 75:3456–3465PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Bodogai M, Lee Chang C, Wejksza K et al (2013) Anti-CD20 antibody promotes cancer escape via enrichment of tumor-evoked regulatory B cells expressing low levels of CD20 and CD137L. Cancer Res 73:2127–2138PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Fuchs EJ, Matzinger PB (1992) Cells turn off virgin but not memory T cells. Science 258:1156–1159PubMedCrossRefGoogle Scholar
  184. 184.
    Hussain S, Delovitch TL (2007) Intravenous transfusion of BCR-activated B cells protects NOD mice from type 1 diabetes in an IL-10-dependent manner. JImmunol 179:7225–7232CrossRefGoogle Scholar
  185. 185.
    Xiao S, Brooks CR, Zhu C et al (2012) Defect in regulatory B-cell function and development of systemic autoimmunity in T-cell Ig mucin 1 (Tim-1) mucin domain-mutant mice. Proc Natl Acad Sci U S A 109:12105–12110PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Lampropoulou V, Hoehlig K, Roch T et al (2008) TLR-activated B cells suppress T cell-mediated autoimmunity. J Immunol 180:4763–4773PubMedCrossRefGoogle Scholar
  187. 187.
    Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3:944–950PubMedCrossRefGoogle Scholar
  188. 188.
    Byrne SN, Halliday GM (2005) B cells activated in lymph nodes in response to ultraviolet irradiation or by interleukin-10 inhibit dendritic cell induction of immunity. JInvest Dermatol 124:570–578CrossRefGoogle Scholar
  189. 189.
    Sindhava V, Woodman ME, Stevenson B, Bondada S (2010) Interleukin-10 mediated autoregulation of murine B-1 B-cells and its role in Borrelia hermsii infection. PLoS One 5:e11445PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Balabanian K, Foussat A, Bouchet-Delbos L et al (2002) Interleukin-10 modulates the sensitivity of peritoneal B lymphocytes to chemokines with opposite effects on stromal cell-derived factor-1 and B-lymphocyte chemoattractant. Blood 99:427–436PubMedCrossRefGoogle Scholar
  191. 191.
    Gary-Gouy H, Harriague J, Bismuth G, Platzer C, Schmitt C, Dalloul AH (2002) Human CD5 promotes B-cell survival through stimulation of autocrine IL-10 production. Blood 100:4537–4543PubMedCrossRefGoogle Scholar
  192. 192.
    Yoshizaki A, Miyagaki T, DiLillo DJ et al (2012) Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature 491:264–268PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Iwata Y, Yoshizaki A, Komura K et al (2009) CD19, a response regulator of B lymphocytes, regulates wound healing through hyaluronan-induced TLR4 signaling. Am J Pathol 175:649–660PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    O’Garra A, Howard M (1992) Cytokines and Ly-1 (B1) B cells. Int Rev Immunol 8:219–234PubMedCrossRefGoogle Scholar
  195. 195.
    Brummel R, Lenert P (2005) Activation of marginal zone B cells from lupus mice with type a(D) CpG-oligodeoxynucleotides. J Immunol 174:2429–2434PubMedCrossRefGoogle Scholar
  196. 196.
    Watt V, Ronchese F, Ritchie D (2007) Resting B cells suppress tumor immunity via an MHC class-II dependent mechanism. J Immunother 30:323–332PubMedCrossRefGoogle Scholar
  197. 197.
    Moulin V, Andris F, Thielemans K, Maliszewski C, Urbain J, Moser M (2000) B lymphocytes regulate dendritic cell (DC) function in vivo: increased interleukin 12 production by DCs from B cell-deficient mice results in T helper cell type 1 deviation. J Exp Med 192:475–482PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Horikawa M, Minard-Colin V, Matsushita T, Tedder TF (2011) Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice. J Clin Invest 121:4268–4280PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Wong SC, Puaux AL, Chittezhath M et al (2010) Macrophage polarization to a unique phenotype driven by B cells. Eur J Immunol 40:2296–2307PubMedCrossRefGoogle Scholar
  200. 200.
    Affara NI, Ruffell B, Medler TR et al (2014) B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 25:809–821PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer immunology, immunotherapy : CII 60:1419–1430PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Olkhanud PB, Baatar D, Bodogai M et al (2009) Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Cancer Res 69:5996–6004PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Teichmann LL, Kashgarian M, Weaver CT, Roers A, Müller W, Shlomchik MJ (2012) B cell-derived IL-10 does not regulate spontaneous systemic autoimmunity in MRL.Fas(lpr) mice. J Immunol 188:678–685PubMedCrossRefGoogle Scholar
  204. 204.
    Lee-Chang C, Bodogai M, Martin-Montalvo A et al (2013) Inhibition of breast cancer metastasis by resveratrol-mediated inactivation of tumor-evoked regulatory B cells. J Immunol 191:4141–4151PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Parekh VV, Prasad DV, Banerjee PP, Joshi BN, Kumar A, Mishra GC (2003) B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8+ T cells: role of TGF-beta 1. J Immunol 170:5897–5911PubMedCrossRefGoogle Scholar
  206. 206.
    Stach RM, Rowley DA (1993) A first or dominant immunization. II. Induced immunoglobulin carries transforming growth factor beta and suppresses cytolytic T cell responses to unrelated alloantigens. J Exp Med 178:841–852PubMedCrossRefGoogle Scholar
  207. 207.
    Rowley DA, Stach RM (1998) B lymphocytes secreting IgG linked to latent transforming growth factor-beta prevent primary cytolytic T lymphocyte responses. Int Immunol 10:355–363PubMedCrossRefGoogle Scholar
  208. 208.
    Tretter T, Venigalla RK, Eckstein V et al (2008) Induction of CD4+ T-cell anergy and apoptosis by activated human B cells. Blood 112:4555–4564PubMedCrossRefGoogle Scholar
  209. 209.
    Frommer F, Heinen TJ, Wunderlich FT et al (2008) Tolerance without clonal expansion: self-antigen-expressing B cells program self-reactive T cells for future deletion. J Immunol 181:5748–5759PubMedCrossRefGoogle Scholar
  210. 210.
    Zuniga E, Rabinovich GA, Iglesias MM, Gruppi A (2001) Regulated expression of galectin-1 during B-cell activation and implications for T-cell apoptosis. J Leukoc Biol 70:73–79PubMedGoogle Scholar
  211. 211.
    Sun JB, Flach CF, Czerkinsky C, Holmgren J (2008) B lymphocytes promote expansion of regulatory T cells in oral tolerance: powerful induction by antigen coupled to cholera toxin B subunit. J Immunol 181:8278–8287PubMedCrossRefGoogle Scholar
  212. 212.
    Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA (2007) IL-2 is essential for TGF-beta to convert naive CD4 + CD25- cells to CD25 + Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 178:2018–2027PubMedCrossRefGoogle Scholar
  213. 213.
    Scapini P, Lamagna C, Hu Y et al (2011) B cell-derived IL-10 suppresses inflammatory disease in Lyn-deficient mice. Proc Natl Acad Sci U S A 108:E823–E832PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Murai M, Turovskaya O, Kim G et al (2009) Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol 10:1178–1184PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Levings MK, Roncarolo MG (2000) T-regulatory 1 cells: a novel subset of CD4 T cells with immunoregulatory properties. JAllergy ClinImmunol 106:S109–S112CrossRefGoogle Scholar
  216. 216.
    Kleinewietfeld M, Puentes F, Borsellino G, Battistini L, Rotzschke O, Falk K (2005) CCR6 expression defines regulatory effector/memory-like cells within the CD25(+) CD4+ T-cell subset. Blood 105:2877–2886PubMedCrossRefGoogle Scholar
  217. 217.
    Matsumoto M, Baba A, Yokota T et al (2014) Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity 41:1040–1051PubMedCrossRefGoogle Scholar
  218. 218.
    Shen P, Roch T, Lampropoulou V et al (2014) IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507:366–370PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Knippenberg S, Peelen E, Smolders J et al (2011) Reduction in IL-10 producing B cells (Breg) in multiple sclerosis is accompanied by a reduced naive/memory Breg ratio during a relapse but not in remission. J Neuroimmunol 239:80–86PubMedCrossRefGoogle Scholar
  220. 220.
    Sun F, Ladha SS, Yang L et al (2014) Interleukin-10 producing-B cells and their association with responsiveness to rituximab in myasthenia gravis. Muscle Nerve 49:487–494PubMedCrossRefGoogle Scholar
  221. 221.
    Mielke F, Schneider-Obermeyer J, Dorner T (2008) Onset of psoriasis with psoriatic arthropathy during rituximab treatment of non-Hodgkin lymphoma. Ann Rheum Dis 67:1056–1057PubMedCrossRefGoogle Scholar
  222. 222.
    Dass S, Vital EM, Emery P (2007) Development of psoriasis after B cell depletion with rituximab. Arthritis Rheum 56:2715–2718PubMedCrossRefGoogle Scholar
  223. 223.
    Goetz M, Atreya R, Ghalibafian M, Galle PR, Neurath MF (2007) Exacerbation of ulcerative colitis after rituximab salvage therapy. Inflamm Bowel Dis 13:1365–1368PubMedCrossRefGoogle Scholar
  224. 224.
    Benedetti L, Franciotta D, Vigo T et al (2007) Relapses after treatment with rituximab in a patient with multiple sclerosis and anti myelin-associated glycoprotein polyneuropathy. Arch Neurol 64:1531–1533PubMedCrossRefGoogle Scholar
  225. 225.
    Inoue S, Leitner WW, Golding B, Scott D (2006) Inhibitory effects of B cells on antitumor immunity. Cancer Res 66:7741–7747PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2017

Authors and Affiliations

  • Arya Biragyn
    • 1
  • Maria Aliseychik
    • 2
  • Evgeny Rogaev
    • 2
    • 3
    • 4
  1. 1.Immunoregulation sectionNational Institute on AgingBaltimoreUSA
  2. 2.Brudnick Neuropsychiatric Research InstituteUniversity of Massachusetts Medical SchoolWorcesterUSA
  3. 3.Department of Genomics and Human Genetics, Russian Academy of SciencesInstitute of General GeneticsMoscowRussia
  4. 4.Center for Brain Neurobiology and Neurogenetics, Siberian Branch of the Russian Academy of SciencesInstitute of Cytology and GeneticsNovosibirskRussia

Personalised recommendations