Seminars in Immunopathology

, Volume 39, Issue 3, pp 255–268 | Cite as

T cell receptor repertoire usage in cancer as a surrogate marker for immune responses

  • David Schrama
  • Cathrin Ritter
  • Jürgen C. Becker


Characterizing the interaction of cancer cells with the host adaptive immune system is critical for understanding tumor immunology and the modus operandi of immunotherapeutic interventions to treat cancer. As the key cellular effectors of adaptive immunity, T cells are endowed with specialized receptors (the T cell receptor; TCR), to recognize and to eliminate cancer cells. The diversity of the TCR repertoire results from specialized genetic diversification mechanisms that generate an incredible variability allowing recognizing extensive collections of antigens. Based on the attainment and function of the TCR, the TCR repertoire is a mirror of the human immune response, and the dynamic changes of its usage can be assumed as a promising biomarker to monitor immunomodulatory therapies. Recent advances in multiplexed PCR amplification and massive parallel sequencing technologies have facilitated the characterization of TCR repertoires at high resolution even when only biomaterial of limited quantity and quality, such as formalin-fixed paraffin-embedded (FFPE) archived tissues, is available. Here, we review the concept framework and current experimental approaches to characterize the TCR repertoire usage in cancer including inherent technical and biological challenges.


Esophageal Squamous Cell Carcinoma Chimeric Antigen Receptor Massive Parallel Sequencing Cell Clonotypes BRAF Inhibitor Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Busch W (1868) Verhandlungen artzlicher gesellschaften. Berl. Klin Wochenschr 5:137–138Google Scholar
  2. 2.
    Coley WB (1893) The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am J Med Sci 105:487–511CrossRefGoogle Scholar
  3. 3.
    Ehrlich P (1909) Über den jetzigen stand der karzinomforschung. Ned Tijdschr Geneeskd 5:273–290Google Scholar
  4. 4.
    Burnet FM (1970) The concept of immunological surveillance. Prog Exp Tumor Res 13:1–27CrossRefPubMedGoogle Scholar
  5. 5.
    Boyle J (2008) Molecular biology of the cell, 5th edition by B. Alberts, a. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Biochem Mol Biol Educ 36:317–318. doi: 10.1002/bmb.20192 CrossRefGoogle Scholar
  6. 6.
    Hermaszewski RA, Webster AD (1993) Primary hypogammaglobulinaemia: a survey of clinical manifestations and complications. Q J Med 86:31–42PubMedGoogle Scholar
  7. 7.
    Liu Q, Yan L, Xu C, Gu A, Zhao P, Jiang ZY (2014) Increased incidence of head and neck cancer in liver transplant recipients: a meta-analysis. BMC Cancer 14(776). doi: 10.1186/1471-2407-14-776
  8. 8.
    Robbins HA, Pfeiffer RM, Shiels MS, Li J, Hall HI, Engels EA (2015) Excess cancers among HIV-infected people in the United States. J Natl Cancer Inst 107. doi: 10.1093/jnci/dju503
  9. 9.
    Shang W, Huang L, Li L, Li X, Zeng R, Ge S, Xu G (2016) Cancer risk in patients receiving renal replacement therapy: a meta-analysis of cohort studies. Mol Clin Oncol 5:315–325. doi: 10.3892/mco.2016.952 PubMedPubMedCentralGoogle Scholar
  10. 10.
    Bajaj NS, Watt C, Hadjiliadis D, Gillespie C, Haas AR, Pochettino A, Mendez J, Sterman DH, Schuchter LM, Christie JD, Lee JC, Ahya VN (2010) Donor transmission of malignant melanoma in a lung transplant recipient 32 years after curative resection. Transpl Int 23:e26–e31. doi: 10.1111/j.1432-2277.2010.01090.x CrossRefPubMedGoogle Scholar
  11. 11.
    Kim JK, Carmody IC, Cohen AJ, Loss GE (2009) Donor transmission of malignant melanoma to a liver graft recipient: case report and literature review. Clin Transpl 23:571–574. doi: 10.1111/j.1399-0012.2008.00928.x CrossRefGoogle Scholar
  12. 12.
    Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, Smyth MJ, Schreiber RD (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450:903–907. doi: 10.1038/nature06309 CrossRefPubMedGoogle Scholar
  13. 13.
    Giraldo NA, Becht E, Remark R, Damotte D, Sautes-Fridman C, Fridman WH (2014) The immune contexture of primary and metastatic human tumours. Curr Opin Immunol 27:8–15. doi: 10.1016/j.coi.2014.01.001 CrossRefPubMedGoogle Scholar
  14. 14.
    Challis GB, Stam HJ (1990) The spontaneous regression of cancer. A review of cases from 1900 to 1987. Acta Oncol 29:545–550CrossRefPubMedGoogle Scholar
  15. 15.
    Iannello A, Raulet DH (2013) Immune surveillance of unhealthy cells by natural killer cells. Cold Spring Harb Symp Quant Biol 78:249–257. doi: 10.1101/sqb.2013.78.020255 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hayashi T, Imai K, Morishita Y, Hayashi I, Kusunoki Y, Nakachi K (2006) Identification of the NKG2D haplotypes associated with natural cytotoxic activity of peripheral blood lymphocytes and cancer immunosurveillance. Cancer Res 66:563–570. doi: 10.1158/0008-5472.CAN-05-2776 CrossRefPubMedGoogle Scholar
  17. 17.
    Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N, Knoblaugh S, Cado D, Greenberg NM, Raulet DH (2008) NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28:571–580. doi: 10.1016/j.immuni.2008.02.016 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pasero C, Gravis G, Guerin M, Granjeaud S, Thomassin-Piana J, Rocchi P, Paciencia-Gros M, Poizat F, Bentobji M, Azario-Cheillan F, Walz J, Salem N, Brunelle S, Moretta A, Olive D (2016) Inherent and tumor-driven immune tolerance in the prostate microenvironment impairs natural killer cell antitumor activity. Cancer Res 76:2153–2165. doi: 10.1158/0008-5472.CAN-15-1965 CrossRefPubMedGoogle Scholar
  19. 19.
    Halama N, Braun M, Kahlert C, Spille A, Quack C, Rahbari N, Koch M, Weitz J, Kloor M, Zoernig I, Schirmacher P, Brand K, Grabe N, Falk CS (2011) Natural killer cells are scarce in colorectal carcinoma tissue despite high levels of chemokines and cytokines. Clin Cancer Res 17:678–689. doi: 10.1158/1078-0432.CCR-10-2173 CrossRefPubMedGoogle Scholar
  20. 20.
    Del Mar Valenzuela-Membrives M, Perea-Garcia F, Sanchez-Palencia A, Ruiz-Cabello F, Gomez-Morales M, Miranda-Leon MT, Galindo-Angel I, Farez-Vidal ME (2016) Progressive changes in composition of lymphocytes in lung tissues from patients with non-small-cell lung cancer. Oncotarget. doi: 10.18632/oncotarget.12264 PubMedPubMedCentralGoogle Scholar
  21. 21.
    Pedersen L, Idorn M, Olofsson GH, Lauenborg B, Nookaew I, Hansen RH, Johannesen HH, Becker JC, Pedersen KS, Dethlefsen C, Nielsen J, Gehl J, Pedersen BK, Thor Straten P, Hojman P (2016) Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab 23:554–562. doi: 10.1016/j.cmet.2016.01.011 CrossRefPubMedGoogle Scholar
  22. 22.
    Harlin H, Meng Y, Peterson AC, Zha Y, Tretiakova M, Slingluff C, McKee M, Gajewski TF (2009) Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res 69:3077–3085. doi: 10.1158/0008-5472.CAN-08-2281 CrossRefPubMedGoogle Scholar
  23. 23.
    Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, Gajewski TF (2011) Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha} + dendritic cells. J Exp Med 208:2005–2016. doi: 10.1084/jem.20101159 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, Duggan R, Wang Y, Barber GN, Fitzgerald KA, Alegre ML, Gajewski TF (2014) STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41:830–842. doi: 10.1016/j.immuni.2014.10.017 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP, Archambault JM, Lee H, Arthur CD, White JM, Kalinke U, Murphy KM, Schreiber RD (2011) Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med 208:1989–2003. doi: 10.1084/jem.20101158 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lurquin C, Van Pel A, Mariame B, De Plaen E, Szikora JP, Janssens C, Reddehase MJ, Lejeune J, Boon T (1989) Structure of the gene of tum- transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 58:293–303CrossRefPubMedGoogle Scholar
  27. 27.
    van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647CrossRefPubMedGoogle Scholar
  28. 28.
    Trolle T, McMurtrey CP, Sidney J, Bardet W, Osborn SC, Kaever T, Sette A, Hildebrand WH, Nielsen M, Peters B (2016) The length distribution of class I-restricted T cell epitopes is determined by both peptide supply and MHC allele-specific binding preference. J Immunol 196:1480–1487. doi: 10.4049/jimmunol.1501721 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    YC L, Yao X, Crystal JS, Li YF, El-Gamil M, Gross C, Davis L, Dudley ME, Yang JC, Samuels Y, Rosenberg SA, Robbins PF (2014) Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin Cancer Res 20:3401–3410. doi: 10.1158/1078-0432.CCR-14-0433 CrossRefGoogle Scholar
  30. 30.
    Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348:69–74. doi: 10.1126/science.aaa4971 CrossRefPubMedGoogle Scholar
  31. 31.
    Klein L, Kyewski B, Allen PM, Hogquist KA (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 14:377–391. doi: 10.1038/nri3667 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Aleksic M, Liddy N, Molloy PE, Pumphrey N, Vuidepot A, Chang KM, Jakobsen BK (2012) Different affinity windows for virus and cancer-specific T-cell receptors: implications for therapeutic strategies. Eur J Immunol 42:3174–3179. doi: 10.1002/eji.201242606 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hebeisen M, Allard M, Gannon PO, Schmidt J, Speiser DE, Rufer N (2015) Identifying individual T cell receptors of optimal avidity for tumor antigens. Front Immunol 6:582. doi: 10.3389/fimmu.2015.00582 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rooney MS, Shukla SA, CJ W, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61. doi: 10.1016/j.cell.2014.12.033 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kvistborg P, Shu CJ, Heemskerk B, Fankhauser M, Thrue CA, Toebes M, van Rooij N, Linnemann C, van Buuren MM, Urbanus JH, Beltman JB, Thor Straten P, Li YF, Robbins PF, Besser MJ, Schachter J, Kenter GG, Dudley ME, Rosenberg SA, Haanen JB, Hadrup SR, Schumacher TN (2012) TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients. Oncoimmunology 1:409–418CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kvistborg P, Philips D, Kelderman S, Hageman L, Ottensmeier C, Joseph-Pietras D, Welters MJ, van der Burg S, Kapiteijn E, Michielin O, Romano E, Linnemann C, Speiser D, Blank C, Haanen JB, Schumacher TN (2014) Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci Transl Med 6:254ra128. doi: 10.1126/scitranslmed.3008918 CrossRefPubMedGoogle Scholar
  37. 37.
    Godfrey DI, Kennedy J, Suda T, Zlotnik A (1993) A developmental pathway involving four phenotypically and functionally distinct subsets of CD3-CD4-CD8- triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol 150:4244–4252PubMedGoogle Scholar
  38. 38.
    Staal FJ, Weerkamp F, Langerak AW, Hendriks RW, Clevers HC (2001) Transcriptional control of t lymphocyte differentiation. Stem Cells 19:165–179. doi: 10.1634/stemcells.19-3-165 CrossRefPubMedGoogle Scholar
  39. 39.
    Livak F, Tourigny M, Schatz DG, Petrie HT (1999) Characterization of TCR gene rearrangements during adult murine T cell development. J Immunol 162:2575–2580PubMedGoogle Scholar
  40. 40.
    Mallis RJ, Bai K, Arthanari H, Hussey RE, Handley M, Li Z, Chingozha L, Duke-Cohan JS, Lu H, Wang JH, Zhu C, Wagner G, Reinherz EL (2015) Pre-TCR ligand binding impacts thymocyte development before alphabetaTCR expression. Proc Natl Acad Sci U S A 112:8373–8378. doi: 10.1073/pnas.1504971112 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yang X, Mariuzza RA (2015) Pre-T-cell receptor binds MHC: implications for thymocyte signaling and selection. Proc Natl Acad Sci U S A 112:8166–8167. doi: 10.1073/pnas.1510127112 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Brady BL, Steinel NC, Bassing CH (2010) Antigen receptor allelic exclusion: an update and reappraisal. J Immunol 185:3801–3808. doi: 10.4049/jimmunol.1001158 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kyewski B, Klein L (2006) A central role for central tolerance. Annu Rev Immunol 24:571–606. doi: 10.1146/annurev.immunol.23.021704.115601 CrossRefPubMedGoogle Scholar
  44. 44.
    Stritesky GL, Xing Y, Erickson JR, Kalekar LA, Wang X, Mueller DL, Jameson SC, Hogquist KA (2013) Murine thymic selection quantified using a unique method to capture deleted T cells. Proc Natl Acad Sci U S A 110:4679–4684. doi: 10.1073/pnas.1217532110 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Singer A, Adoro S, Park JH (2008) Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat Rev Immunol 8:788–801. doi: 10.1038/nri2416 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Klarenbeek PL, Doorenspleet ME, Esveldt RE, van Schaik BD, Lardy N, van Kampen AH, Tak PP, Plenge RM, Baas F, de Bakker PI, de Vries N (2015) Somatic variation of T-cell receptor genes strongly associate with HLA class restriction. PLoS One 10:e0140815. doi: 10.1371/journal.pone.0140815 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Davis MM, Bjorkman PJ (1988) T-cell antigen receptor genes and T-cell recognition. Nature 334:395–402. doi: 10.1038/334395a0 CrossRefPubMedGoogle Scholar
  48. 48.
    Vanhanen R, Heikkila N, Aggarwal K, Hamm D, Tarkkila H, Patila T, Jokiranta TS, Saramaki J, Arstila TP (2016) T cell receptor diversity in the human thymus. Mol Immunol 76:116–122. doi: 10.1016/j.molimm.2016.07.002 CrossRefPubMedGoogle Scholar
  49. 49.
    Qi Q, Liu Y, Cheng Y, Glanville J, Zhang D, Lee JY, Olshen RA, Weyand CM, Boyd SD, Goronzy JJ (2014) Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci U S A 111:13139–13144. doi: 10.1073/pnas.1409155111 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Li HM, Hiroi T, Zhang Y, Shi A, Chen G, De S, Metter EJ, Wood WH 3rd, Sharov A, Milner JD, Becker KG, Zhan M, Weng NP (2016) TCRbeta repertoire of CD4+ and CD8+ T cells is distinct in richness, distribution, and CDR3 amino acid composition. J Leukoc Biol 99:505–513. doi: 10.1189/jlb.6A0215-071RR CrossRefPubMedGoogle Scholar
  51. 51.
    thor Straten P, Becker JC, Seremet T, Brocker EB, Zeuthen J (1996) Clonal T cell responses in tumor infiltrating lymphocytes from both regressive and progressive regions of primary human malignant melanoma. J Clin Invest 98:279–284. doi: 10.1172/JCI118790 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Straten P, Dahl C, Schrama D, Pedersen LO, Andersen MH, Seremet T, Brocker EB, Guldberg P, Becker JC (2006) Identification of identical TCRs in primary melanoma lesions and tumor free corresponding sentinel lymph nodes. Cancer Immunol Immunother 55:495–502. doi: 10.1007/s00262-005-0023-8 CrossRefPubMedGoogle Scholar
  53. 53.
    Cochet M, Pannetier C, Regnault A, Darche S, Leclerc C, Kourilsky P (1992) Molecular detection and in vivo analysis of the specific T cell response to a protein antigen. Eur J Immunol 22:2639–2647. doi: 10.1002/eji.1830221025 CrossRefPubMedGoogle Scholar
  54. 54.
    Pannetier C, Even J, Kourilsky P (1995) T-cell repertoire diversity and clonal expansions in normal and clinical samples. Immunol Today 16:176–181CrossRefPubMedGoogle Scholar
  55. 55.
    Robins H (2013) Immunosequencing: applications of immune repertoire deep sequencing. Curr Opin Immunol 25:646–652. doi: 10.1016/j.coi.2013.09.017 CrossRefPubMedGoogle Scholar
  56. 56.
    Bai X, Zhang Q, Wu S, Zhang X, Wang M, He F, Wei T, Yang J, Lou Y, Cai Z, Liang T (2015) Characteristics of tumor infiltrating lymphocyte and circulating lymphocyte repertoires in pancreatic cancer by the sequencing of T cell receptors. Sci Rep 5:13664. doi: 10.1038/srep13664 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jang M, Yew PY, Hasegawa K, Ikeda Y, Fujiwara K, Fleming GF, Nakamura Y, Park JH (2015) Characterization of T cell repertoire of blood, tumor, and ascites in ovarian cancer patients using next generation sequencing. Oncoimmunology 4:e1030561. doi: 10.1080/2162402X.2015.1030561 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sims JS, Grinshpun B, Feng Y, Ung TH, Neira JA, Samanamud JL, Canoll P, Shen Y, Sims PA, Bruce JN (2016) Diversity and divergence of the glioma-infiltrating T-cell receptor repertoire. Proc Natl Acad Sci U S A 113:E3529–E3537. doi: 10.1073/pnas.1601012113 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Topalian SL, Wolchok JD, Chan TA, Mellman I, Palucka K, Banchereau J, Rosenberg SA, Dane Wittrup K (2015) Immunotherapy: the path to win the war on cancer? Cell 161:185–186CrossRefPubMedGoogle Scholar
  60. 60.
    Menon S, Shin S, Dy G (2016) Advances in cancer immunotherapy in solid tumors. Cancers 8:106. doi: 10.3390/cancers8120106 CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoué F, Bruneval P, Cugnenc P-H, Trajanoski Z, Fridman W-H, Pagès F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science (New York, NY) 313:1960–1964. doi: 10.1126/science.1129139 CrossRefGoogle Scholar
  62. 62.
    Galon J, Fox BA, Bifulco CB, Masucci G, Rau T, Botti G, Marincola FM, Ciliberto G, Pages F, Ascierto PA, Capone M (2016) Immunoscore and immunoprofiling in cancer: an update from the melanoma and immunotherapy bridge 2015. J Transl Med 14:273. doi: 10.1186/s12967-016-1029-z CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kohrt HE, Tumeh PC, Benson D, Bhardwaj N, Brody J, Formenti S, Fox BA, Galon J, June CH, Kalos M, Kirsch I, Kleen T, Kroemer G, Lanier L, Levy R, Lyerly HK, Maecker H, Marabelle A, Melenhorst J, Miller J, Melero I, Odunsi K, Palucka K, Peoples G, Ribas A, Robins H, Robinson W, Serafini T, Sondel P, Vivier E, Weber J, Wolchok J, Zitvogel L, Disis ML, Cheever MA, (CITN) CITN (2016) Immunodynamics: a cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials. Journal for immunotherapy of cancer 4:711. doi: 10.1186/s40425-016-0118-0 CrossRefGoogle Scholar
  64. 64.
    Linnemann C, Mezzadra R, Schumacher TNM (2014) TCR repertoires of intratumoral T-cell subsets. Immunol Rev 257:72–82. doi: 10.1111/imr.12140 CrossRefPubMedGoogle Scholar
  65. 65.
    Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins H, Pierce RH, Elashoff DA, Robert C, Ribas A (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571. doi: 10.1038/nature13954 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Funt S, Charen AS, Yusko E, Vignali M, Benzeno S, Boyd ME, Moran MM, Kania BE, Cipolla CK, Regazzi AM, Robins H, Iyer G, Rosenberg JE, and Bajorin DF (2016) Correlation of peripheral and intratumoral T-cell receptor (TCR) clonality with clinical outcomes in patients with metastatic urothelial cancer (mUC) treated with atezolizumab. in ASCO Abstract 3005. J Clin OncolGoogle Scholar
  67. 67.
    Cooper ZA, Frederick DT, Juneja VR, Sullivan RJ, Lawrence DP, Piris A, Sharpe AH, Fisher DE, Flaherty KT, Wargo JA (2013) BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. Oncoimmunology 2:e26615. doi: 10.4161/onci.26615 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sherwood AM, Emerson RO, Scherer D, Habermann N, Buck K, Staffa J, Desmarais C, Halama N, Jaeger D, Schirmacher P, Herpel E, Kloor M, Ulrich A, Schneider M, Ulrich CM, Robins H (2013) Tumor-infiltrating lymphocytes in colorectal tumors display a diversity of T cell receptor sequences that differ from the T cells in adjacent mucosal tissue. Cancer immunology, immunotherapy : CII 62:1453–1461. doi: 10.1007/s00262-013-1446-2 CrossRefPubMedGoogle Scholar
  69. 69.
    Chen Z, Zhang C, Pan Y, Xu R, Xu C, Chen Z, Lu Z, Ke Y (2016) T cell receptor β-chain repertoire analysis reveals intratumour heterogeneity of tumour-infiltrating lymphocytes in oesophageal squamous cell carcinoma. J Pathol 239:450–458. doi: 10.1002/path.4742 CrossRefPubMedGoogle Scholar
  70. 70.
    Willhauck M, Möhler T, Scheibenbogen C, Pawlita M, Brossart P, Schmier JW, Keilholz U (1996) T-cell receptor beta variable region diversity in melanoma metastases after interleukin 2-based immunotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research 2:767–772Google Scholar
  71. 71.
    Hishii M, Andrews D, Boyle LA, Wong JT, Pandolfi F, van den Elsen PJ, Kurnick JT (1997) In vivo accumulation of the same anti-melanoma T cell clone in two different metastatic sites. Proc Natl Acad Sci 94:1378–1383CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Gerlinger M, Quezada SA, Peggs KS, Furness AJS, Fisher R, Marafioti T, Shende VH, McGranahan N, Rowan AJ, Hazell S, Hamm D, Robins HS, Pickering L, Gore M, Nicol DL, Larkin J, Swanton C (2013) Ultra-deep T cell receptor sequencing reveals the complexity and intratumour heterogeneity of T cell clones in renal cell carcinomas. J Pathol 231:424–432. doi: 10.1002/path.4284 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Emerson RO, Sherwood AM, Rieder MJ, Guenthoer J, Williamson DW, Carlson CS, Drescher CW, Tewari M, Bielas JH, Robins HS (2013) High-throughput sequencing of T-cell receptors reveals a homogeneous repertoire of tumour-infiltrating lymphocytes in ovarian cancer. J Pathol 231:433–440. doi: 10.1002/path.4260 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Andersen RS, Thrue CA, Junker N, Lyngaa R, Donia M, Ellebæk E, Svane IM, Schumacher TN, Thor Straten P, Hadrup SR (2012) Dissection of T-cell antigen specificity in human melanoma. Cancer Res 72:1642–1650. doi: 10.1158/0008-5472.CAN-11-2614 CrossRefPubMedGoogle Scholar
  75. 75.
    Warren RL, Freeman JD, Zeng T, Choe G, Munro S, Moore R, Webb JR, Holt RA (2011) Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes. Genome Res 21:790–797. doi: 10.1101/gr.115428.110 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Dieu-Nosjean M-C, Goc J, Giraldo NA, Sautès-Fridman C, Fridman W-H (2014) Tertiary lymphoid structures in cancer and beyond. Trends Immunol 35:571–580. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  77. 77.
    Grupp SA, Prak EL, Boyer J, McDonald KR, Shusterman S, Thompson E, Callahan C, Jawad AF, Levine BL, June CH, Sullivan KE (2012) Adoptive transfer of autologous T cells improves T-cell repertoire diversity and long-term B-cell function in pediatric patients with neuroblastoma. Clinical cancer research : an official journal of the American Association for Cancer Research 18:6732–6741. doi: 10.1158/1078-0432.CCR-12-1432 CrossRefGoogle Scholar
  78. 78.
    Li Y, Xu L (2015) Evaluation of TCR repertoire diversity in patients after hematopoietic stem cell transplantation. Stem cell investigation 2:17. doi: 10.3978/j.issn.2306-9759.2015.09.01 PubMedPubMedCentralGoogle Scholar
  79. 79.
    Zhou J, Dudley ME, Rosenberg SA, Robbins PF (2005) Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. Journal of immunotherapy (Hagerstown, Md : 1997) 28:53–62CrossRefPubMedCentralGoogle Scholar
  80. 80.
    Manuel M, Tredan O, Bachelot T, Clapisson G, Courtier A, Parmentier G, Rabeony T, Grives A, Perez S, Mouret J-F, Perol D, Chabaud S, Ray-Coquard I, Labidi-Galy I, Heudel P, Pierga J-Y, Caux C, Blay J-Y, Pasqual N, Ménétrier-Caux C (2012) Lymphopenia combined with low TCR diversity (divpenia) predicts poor overall survival in metastatic breast cancer patients. OncoImmunology 1:432–440CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Robert L, Tsoi J, Wang X, Emerson R, Homet B, Chodon T, Mok S, Huang RR, Cochran AJ, Comin-Anduix B, Koya RC, Graeber TG, Robins H, Ribas A (2014) CTLA4 blockade broadens the peripheral T-cell receptor repertoire. Clinical cancer research : an official journal of the American Association for Cancer Research 20:2424–2432. doi: 10.1158/1078-0432.CCR-13-2648 CrossRefGoogle Scholar
  82. 82.
    Postow MA, Manuel M, Wong P, Yuan J, Dong Z, Liu C, Perez S, Tanneau I, Noel M, Courtier A, Pasqual N, Wolchok JD (2015) Peripheral T cell receptor diversity is associated with clinical outcomes following ipilimumab treatment in metastatic melanoma. Journal for immunotherapy of cancer 3:23. doi: 10.1186/s40425-015-0070-4 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Goldinger SM, Courtier A, Jaberg-Bentele NF, Schindler S, Manuel M, Plantier N, Treillard B, Noel M, Nguyen-Kim TDL, Raaijmakers MIG, Kvistborg P, Haanen JBAG, Dummer R, and Levesque M (2016) The peripheral blood TCR repertoire to facilitate patient stratification for immune checkpoint blockade inhibition in metastatic melanoma. in ASCO Abstract 3026. J Clin OncolGoogle Scholar
  84. 84.
    Cha E, Klinger M, Hou Y, Cummings C, Ribas A, Faham M, Fong L (2014) Improved survival with T cell clonotype stability after anti-CTLA-4 treatment in cancer patients. Sci Transl Med 6:238ra70. doi: 10.1126/scitranslmed.3008211 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Sportès C, Hakim FT, Memon SA, Zhang H, Chua KS, Brown MR, Fleisher TA, Krumlauf MC, Babb RR, Chow CK, Fry TJ, Engels J, Buffet R, Morre M, Amato RJ, Venzon DJ, Korngold R, Pecora A, Gress RE, Mackall CL (2008) Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med 205:1701–1714. doi: 10.1084/jem.20071681 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Nie J, Zhang Y, Li X, Chen M, Liu C, Han W (2016) DNA demethylating agent decitabine broadens the peripheral T cell receptor repertoire. Oncotarget 7:37882–37892. doi: 10.18632/oncotarget.9352 PubMedPubMedCentralGoogle Scholar
  87. 87.
    Sheikh N, Cham J, Zhang L, DeVries T, Letarte S, Pufnock J, Hamm D, Trager J, Fong L (2016) Clonotypic diversification of intratumoral T cells following sipuleucel-T treatment in prostate cancer subjects. Cancer Res 76:3711–3718. doi: 10.1158/0008-5472.CAN-15-3173 CrossRefPubMedGoogle Scholar
  88. 88.
    Klinger M, Kong K, Moorhead M, Weng L, Zheng J, Faham M (2013) Combining next-generation sequencing and immune assays: a novel method for identification of antigen-specific T cells. PLoS One 8:e74231. doi: 10.1371/journal.pone.0074231 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Li S, Lefranc MP, Miles JJ, Alamyar E, Giudicelli V, Duroux P, Freeman JD, Corbin VD, Scheerlinck JP, Frohman MA, Cameron PU, Plebanski M, Loveland B, Burrows SR, Papenfuss AT, Gowans EJ (2013) IMGT/HighV QUEST paradigm for T cell receptor IMGT clonotype diversity and next generation repertoire immunoprofiling. Nat Commun 4:2333. doi: 10.1038/ncomms3333 PubMedPubMedCentralGoogle Scholar
  90. 90.
    Li B, Li T, Pignon JC, Wang B, Wang J, Shukla SA, Dou R, Chen Q, Hodi FS, Choueiri TK, Wu C, Hacohen N, Signoretti S, Liu JS, Liu XS (2016) Landscape of tumor-infiltrating T cell repertoire of human cancers. Nat Genet 48:725–732. doi: 10.1038/ng.3581 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Favier B, Burroughs NJ, Wedderburn L, Valitutti S (2001) TCR dynamics on the surface of living T cells. Int Immunol 13:1525–1532CrossRefPubMedGoogle Scholar
  92. 92.
    Turchaninova MA, Britanova OV, Bolotin DA, Shugay M, Putintseva EV, Staroverov DB, Sharonov G, Shcherbo D, Zvyagin IV, Mamedov IZ, Linnemann C, Schumacher TN, Chudakov DM (2013) Pairing of T-cell receptor chains via emulsion PCR. Eur J Immunol 43:2507–2515. doi: 10.1002/eji.201343453 CrossRefPubMedGoogle Scholar
  93. 93.
    Munson DJ, Egelston CA, Chiotti KE, Parra ZE, Bruno TC, Moore BL, Nakano TA, Simons DL, Jimenez G, Yim JH, Rozanov DV, Falta MT, Fontenot AP, Reynolds PR, Leach SM, Borges VF, Kappler JW, Spellman PT, Lee PP, Slansky JE (2016) Identification of shared TCR sequences from T cells in human breast cancer using emulsion RT-PCR. Proc Natl Acad Sci U S A 113:8272–8277. doi: 10.1073/pnas.1606994113 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Howie B, Sherwood AM, Berkebile AD, Berka J, Emerson RO, Williamson DW, Kirsch I, Vignali M, Rieder MJ, Carlson CS, Robins HS (2015) High-throughput pairing of T cell receptor alpha and beta sequences. Sci Transl Med 7:301ra131. doi: 10.1126/scitranslmed.aac5624 CrossRefPubMedGoogle Scholar
  95. 95.
    Klinger M, Pepin F, Wilkins J, Asbury T, Wittkop T, Zheng J, Moorhead M, Faham M (2015) Multiplex identification of antigen-specific T cell receptors using a combination of immune assays and immune receptor sequencing. PLoS One 10:e0141561. doi: 10.1371/journal.pone.0141561 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Hanson WM, Chen Z, Jackson LK, Attaf M, Sewell AK, Heemstra JM, Phillips JD (2016) Reversible oligonucleotide chain blocking enables bead capture and amplification of T-cell receptor alpha and beta chain mRNAs. J Am Chem Soc 138:11073–11076. doi: 10.1021/jacs.6b04465 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Redmond D, Poran A, Elemento O (2016) Single-cell TCRseq: paired recovery of entire T-cell alpha and beta chain transcripts in T-cell receptors from single-cell RNAseq. Genome Med 8:80. doi: 10.1186/s13073-016-0335-7 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Nazarov VI, Pogorelyy MV, Komech EA, Zvyagin IV, Bolotin DA, Shugay M, Chudakov DM, Lebedev YB, Mamedov IZ (2015) tcR: an R package for T cell receptor repertoire advanced data analysis. BMC Bioinformatics 16:175. doi: 10.1186/s12859-015-0613-1 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Zhang S-Q, Parker P, Ma K-Y, He C, Shi Q, Cui Z, Williams CM, Wendel BS, Meriwether AI, Salazar MA, Jiang N (2016) Direct measurement of T cell receptor affinity and sequence from naïve antiviral T cells. Sci Transl Med 8:341ra77. doi: 10.1126/scitranslmed.aaf1278 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Bentzen AK, Marquard AM, Lyngaa R, Saini SK, Ramskov S, Donia M, Such L, Furness AJ, McGranahan N, Rosenthal R, Straten PT, Szallasi Z, Svane IM, Swanton C, Quezada SA, Jakobsen SN, Eklund AC, Hadrup SR (2016) Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat Biotechnol. doi: 10.1038/nbt.3662 PubMedGoogle Scholar
  101. 101.
    Pasetto A, Alena G, Robbins PF, Deniger DC, Prickett TD, Matus-Nicodemos R, Douek DC, Howie B, Robins H, Parkhurst MR, Gartner JJ, Trebska-McGowan K, Crystal JS, Rosenberg SA (2016) Tumor- and neoantigen-reactive T-cell receptors can be identified based on their frequency in fresh tumor. Cancer Immunol Res DOI. doi: 10.1158/2326-6066.CIR-16-0001 Google Scholar
  102. 102.
    Poschke I, Flossdorf M, Offringa R (2016) Next generation TCR sequencing—a tool to understand T cell infiltration in human cancers. J Pathol. doi: 10.1002/path.4800 PubMedGoogle Scholar
  103. 103.
    Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, Prickett TD, Gartner JJ, Crystal JS, Roberts IM, Trebska-McGowan K, Wunderlich JR, Yang JC, Rosenberg SA (2016) Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med 22:433–438. doi: 10.1038/nm.4051 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • David Schrama
    • 1
  • Cathrin Ritter
    • 2
    • 3
    • 4
  • Jürgen C. Becker
    • 2
    • 3
    • 4
  1. 1.Department of DermatologyUniversity Hospital WürzburgWürzburgGermany
  2. 2.Department of Translational Skin Cancer ResearchUniversity Hospital EssenEssenGermany
  3. 3.German Cancer Consortium (DKTK)EssenGermany
  4. 4.German Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations