Seminars in Immunopathology

, Volume 39, Issue 1, pp 29–38 | Cite as

IL-9 and Th9 in parasite immunity

  • P. Licona-Limón
  • A. Arias-Rojas
  • E. Olguín-Martínez
Review

Abstract

Interleukin-9 is a cytokine classically related to type 2 immune responses whose cellular identity has been recently reevaluated to identify a new specialized T helper subset called Th9 and an innate source referred as innate lymphoid cell type 2. Over the past years, IL-9 has been associated with allergic responses, tumor immunology, and autoimmunity; however, in this review, we will specifically focus on the role of IL-9 and Th9 cells in the context of parasitic infections. We will summarize and discuss all the evidence relating IL-9 expression and function in parasitic infections with a particular emphasis in helminth infections, an important health issue in developing countries; we will also provide a general description and classification of parasites, the immune response and cellular compartments activated in this context, and its implications and future directions towards a complete understanding of this interesting new T helper subset and its potential therapeutic use.

Keywords

Parasite Helminth IL-9 Worm 

Abbreviations

DC

Dendritic cell

ILC

Innate lymphoid cell

MC

Mast cell

MMCP-1

Mucosal mast cell protease-1

NTD

Neglected tropical diseases

STH

Soil-transmitted helminths

Th9

T helper 9

TSLP

Thymic stromal lymphopoietin

Notes

Acknowledgements

We apologize to the researchers whose work could not be cited due to space limitations. This work was supported by the following grants to PLL from CONACYT (CB-2015-01-255287, S008-2015-2-261227) and DGAPA (IA202116-PAPIIT).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Garcia LS (1999) Classification of human parasites, vectors, and similar organisms. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 29(4):734–736. doi:10.1086/520425 CrossRefGoogle Scholar
  2. 2.
    Allen JE, Maizels RM (2011) Diversity and dialogue in immunity to helminths. Nat Rev Immunol 11(6):375–388. doi:10.1038/nri2992 CrossRefPubMedGoogle Scholar
  3. 3.
    Anthony RM, Rutitzky LI, Urban JF Jr, Stadecker MJ, Gause WC (2007) Protective immune mechanisms in helminth infection. Nat Rev Immunol 7(12):975–987. doi:10.1038/nri2199 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Specht S, Saeftel M, Arndt M, Endl E, Dubben B, Lee NA, Lee JJ, Hoerauf A (2006) Lack of eosinophil peroxidase or major basic protein impairs defense against murine filarial infection. Infect Immun 74(9):5236–5243. doi:10.1128/IAI.00329-06 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Karasuyama H, Wada T, Yoshikawa S, Obata K (2011) Emerging roles of basophils in protective immunity against parasites. Trends Immunol 32(3):125–130. doi:10.1016/j.it.2010.11.006 CrossRefPubMedGoogle Scholar
  6. 6.
    McDermott JR, Bartram RE, Knight PA, Miller HR, Garrod DR, Grencis RK (2003) Mast cells disrupt epithelial barrier function during enteric nematode infection. Proc Natl Acad Sci U S A 100(13):7761–7766. doi:10.1073/pnas.1231488100 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Anthony RM, Urban JF Jr, Alem F, Hamed HA, Rozo CT, Boucher JL, Van Rooijen N, Gause WC (2006) Memory T(H)2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nat Med 12(8):955–960. doi:10.1038/nm1451 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Al-Qaoud KM, Pearlman E, Hartung T, Klukowski J, Fleischer B, Hoerauf A (2000) A new mechanism for IL-5-dependent helminth control: neutrophil accumulation and neutrophil-mediated worm encapsulation in murine filariasis are abolished in the absence of IL-5. Int Immunol 12(6):899–908CrossRefPubMedGoogle Scholar
  9. 9.
    Padigel UM, Stein L, Redding K, Lee JJ, Nolan TJ, Schad GA, Birnbaumer L, Abraham D (2007) Signaling through Galphai2 protein is required for recruitment of neutrophils for antibody-mediated elimination of larval Strongyloides stercoralis in mice. J Leukoc Biol 81(4):1120–1126. doi:10.1189/jlb.1106695 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R, Jolin HE, McKenzie AN (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464(7293):1367–1370. doi:10.1038/nature08900 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fujii H, Koyasu S (2010) Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463(7280):540–544. doi:10.1038/nature08636 CrossRefPubMedGoogle Scholar
  12. 12.
    Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ, Locksley RM (2010) Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci U S A 107(25):11489–11494. doi:10.1073/pnas.1003988107 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Harris N, Gause WC (2011) To B or not to B: B cells and the Th2-type immune response to helminths. Trends Immunol 32(2):80–88. doi:10.1016/j.it.2010.11.005 CrossRefPubMedGoogle Scholar
  14. 14.
    Vignali DA, Crocker P, Bickle QD, Cobbold S, Waldmann H, Taylor MG (1989) A role for CD4+ but not CD8+ T cells in immunity to Schistosoma mansoni induced by 20 krad-irradiated and ro 11-3128-terminated infections. Immunology 67(4):466–472PubMedPubMedCentralGoogle Scholar
  15. 15.
    Katona IM, Urban JF Jr, Finkelman FD (1988) The role of L3T4+ and Lyt-2+ T cells in the IgE response and immunity to Nippostrongylus brasiliensis. J Immunol 140(9):3206–3211PubMedGoogle Scholar
  16. 16.
    Shinkai K, Mohrs M, Locksley RM (2002) Helper T cells regulate type-2 innate immunity in vivo. Nature 420(6917):825–829. doi:10.1038/nature01202 CrossRefPubMedGoogle Scholar
  17. 17.
    Liu Z, Liu Q, Hamed H, Anthony RM, Foster A, Finkelman FD, Urban JF Jr, Gause WC (2005) IL-2 and autocrine IL-4 drive the in vivo development of antigen-specific Th2 T cells elicited by nematode parasites. J Immunol 174(4):2242–2249CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Licona-Limon P, Henao-Mejia J, Temann AU, Gagliani N, Licona-Limon I, Ishigame H, Hao L, Herbert DR, Flavell RA (2013) Th9 cells drive host immunity against gastrointestinal worm infection. Immunity 39(4):744–757. doi:10.1016/j.immuni.2013.07.020 CrossRefPubMedGoogle Scholar
  19. 19.
    McSorley HJ, Harcus YM, Murray J, Taylor MD, Maizels RM (2008) Expansion of Foxp3+ regulatory T cells in mice infected with the filarial parasite Brugia malayi. J Immunol 181(9):6456–6466CrossRefPubMedGoogle Scholar
  20. 20.
    Grainger JR, Smith KA, Hewitson JP, McSorley HJ, Harcus Y, Filbey KJ, Finney CA, Greenwood EJ, Knox DP, Wilson MS, Belkaid Y, Rudensky AY, Maizels RM (2010) Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-beta pathway. J Exp Med 207(11):2331–2341. doi:10.1084/jem.20101074 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Saenz SA, Siracusa MC, Perrigoue JG, Spencer SP, Urban JF Jr, Tocker JE, Budelsky AL, Kleinschek MA, Kastelein RA, Kambayashi T, Bhandoola A, Artis D (2010) IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature 464(7293):1362–1366. doi:10.1038/nature08901 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Saenz SA, Taylor BC, Artis D (2008) Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol Rev 226:172–190. doi:10.1111/j.1600-065X.2008.00713.x CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kouzaki H, O'Grady SM, Lawrence CB, Kita H (2009) Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease-activated receptor-2. J Immunol 183(2):1427–1434. doi:10.4049/jimmunol.0900904 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hasnain SZ, Evans CM, Roy M, Gallagher AL, Kindrachuk KN, Barron L, Dickey BF, Wilson MS, Wynn TA, Grencis RK, Thornton DJ (2011) Muc5ac: a critical component mediating the rejection of enteric nematodes. J Exp Med 208(5):893–900. doi:10.1084/jem.20102057 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Herbert DR, Yang JQ, Hogan SP, Groschwitz K, Khodoun M, Munitz A, Orekov T, Perkins C, Wang Q, Brombacher F, Urban JF Jr, Rothenberg ME, Finkelman FD (2009) Intestinal epithelial cell secretion of RELM-beta protects against gastrointestinal worm infection. J Exp Med 206(13):2947–2957. doi:10.1084/jem.20091268 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Akiho H, Blennerhassett P, Deng Y, Collins SM (2002) Role of IL-4, IL-13, and STAT6 in inflammation-induced hypercontractility of murine smooth muscle cells. American journal of physiology Gastrointestinal and liver physiology 282(2):G226–G232PubMedGoogle Scholar
  27. 27.
    Cliffe LJ, Humphreys NE, Lane TE, Potten CS, Booth C, Grencis RK (2005) Accelerated intestinal epithelial cell turnover: a new mechanism of parasite expulsion. Science 308(5727):1463–1465. doi:10.1126/science.1108661 CrossRefPubMedGoogle Scholar
  28. 28.
    Balic A, Harcus Y, Holland MJ, Maizels RM (2004) Selective maturation of dendritic cells by Nippostrongylus brasiliensis-secreted proteins drives Th2 immune responses. Eur J Immunol 34(11):3047–3059. doi:10.1002/eji.200425167 CrossRefPubMedGoogle Scholar
  29. 29.
    Steinfelder S, Andersen JF, Cannons JL, Feng CG, Joshi M, Dwyer D, Caspar P, Schwartzberg PL, Sher A, Jankovic D (2009) The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). J Exp Med 206(8):1681–1690. doi:10.1084/jem.20082462 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hesse M, Modolell M, La Flamme AC, Schito M, Fuentes JM, Cheever AW, Pearce EJ, Wynn TA (2001) Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J Immunol 167(11):6533–6544CrossRefPubMedGoogle Scholar
  31. 31.
    Miyake K, Tanaka T, McNeil PL (2006) Disruption-induced mucus secretion: repair and protection. PLoS Biol 4(9):e276. doi:10.1371/journal.pbio.0040276 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Grencis RK, Hultner L, Else KJ (1991) Host protective immunity to Trichinella spiralis in mice: activation of Th cell subsets and lymphokine secretion in mice expressing different response phenotypes. Immunology 74(2):329–332PubMedPubMedCentralGoogle Scholar
  33. 33.
    Renauld JC, van der Lugt N, Vink A, van Roon M, Godfraind C, Warnier G, Merz H, Feller A, Berns A, Van Snick J (1994) Thymic lymphomas in interleukin 9 transgenic mice. Oncogene 9(5):1327–1332PubMedGoogle Scholar
  34. 34.
    Faulkner H, Humphreys N, Renauld JC, Van Snick J, Grencis R (1997) Interleukin-9 is involved in host protective immunity to intestinal nematode infection. Eur J Immunol 27(10):2536–2540. doi:10.1002/eji.1830271011 CrossRefPubMedGoogle Scholar
  35. 35.
    Leech MD, Grencis RK (2006) Induction of enhanced immunity to intestinal nematodes using IL-9-producing dendritic cells. J Immunol 176(4):2505–2511CrossRefPubMedGoogle Scholar
  36. 36.
    Blum LK, Mohanan S, Fabre MV, Yafawi RE, Appleton JA (2013) Intestinal infection with Trichinella spiralis induces distinct, regional immune responses. Vet Parasitol 194(2–4):101–105. doi:10.1016/j.vetpar.2013.01.030 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Helmby H, Grencis RK (2002) IL-18 regulates intestinal mastocytosis and Th2 cytokine production independently of IFN-gamma during Trichinella spiralis infection. J Immunol 169(5):2553–2560CrossRefPubMedGoogle Scholar
  38. 38.
    Scales HE, Ierna MX, Gutierrez-Ramos JC, Coyle AJ, Garside P, Lawrence CE (2004) Effect of inducible costimulator blockade on the pathological and protective immune responses induced by the gastrointestinal helminth Trichinella spiralis. Eur J Immunol 34(10):2854–2862. doi:10.1002/eji.200324364 CrossRefPubMedGoogle Scholar
  39. 39.
    Angkasekwinai P, Srimanote P, Wang YH, Pootong A, Sakolvaree Y, Pattanapanyasat K, Chaicumpa W, Chaiyaroj S, Dong C (2013) Interleukin-25 (IL-25) promotes efficient protective immunity against Trichinella spiralis infection by enhancing the antigen-specific IL-9 response. Infect Immun 81(10):3731–3741. doi:10.1128/IAI.00646-13 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wilhelm C, Hirota K, Stieglitz B, Van Snick J, Tolaini M, Lahl K, Sparwasser T, Helmby H, Stockinger B (2011) An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat Immunol 12(11):1071–1077. doi:10.1038/ni.2133 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Gerlach K, Hwang Y, Nikolaev A, Atreya R, Dornhoff H, Steiner S, Lehr HA, Wirtz S, Vieth M, Waisman A, Rosenbauer F, McKenzie AN, Weigmann B, Neurath MF (2014) TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol 15(7):676–686. doi:10.1038/ni.2920 CrossRefPubMedGoogle Scholar
  42. 42.
    Mohapatra A, Van Dyken SJ, Schneider C, Nussbaum JC, Liang HE, Locksley RM (2016) Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis. Mucosal immunology 9(1):275–286. doi:10.1038/mi.2015.59 CrossRefPubMedGoogle Scholar
  43. 43.
    Else KJ, Hultner L, Grencis RK (1992) Cellular immune responses to the murine nematode parasite Trichuris muris. II. Differential induction of TH-cell subsets in resistant versus susceptible mice. Immunology 75(2):232–237PubMedPubMedCentralGoogle Scholar
  44. 44.
    Else KJ, Hultner L, Grencis RK (1992) Modulation of cytokine production and response phenotypes in murine trichuriasis. Parasite Immunol 14(4):441–449CrossRefPubMedGoogle Scholar
  45. 45.
    Else KJ, Entwistle GM, Grencis RK (1993) Correlations between worm burden and markers of Th1 and Th2 cell subset induction in an inbred strain of mouse infected with Trichuris muris. Parasite Immunol 15(10):595–600CrossRefPubMedGoogle Scholar
  46. 46.
    Faulkner H, Renauld JC, Van Snick J, Grencis RK (1998) Interleukin-9 enhances resistance to the intestinal nematode Trichuris muris. Infect Immun 66(8):3832–3840PubMedPubMedCentralGoogle Scholar
  47. 47.
    Richard M, Grencis RK, Humphreys NE, Renauld JC, Van Snick J (2000) Anti-IL-9 vaccination prevents worm expulsion and blood eosinophilia in Trichuris muris-infected mice. Proc Natl Acad Sci U S A 97(2):767–772CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Khan WI, Richard M, Akiho H, Blennerhasset PA, Humphreys NE, Grencis RK, Van Snick J, Collins SM (2003) Modulation of intestinal muscle contraction by interleukin-9 (IL-9) or IL-9 neutralization: correlation with worm expulsion in murine nematode infections. Infect Immun 71(5):2430–2438CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C, Stockinger B (2008) Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9(12):1341–1346. doi:10.1038/ni.1659 CrossRefPubMedGoogle Scholar
  50. 50.
    Dehlawi MS, Wakelin D (1988) Suppression of mucosal mastocytosis by Nematospiroides dubius results from an adult worm-mediated effect upon host lymphocytes. Parasite Immunol 10(1):85–95CrossRefPubMedGoogle Scholar
  51. 51.
    Svetic A, Madden KB, Zhou XD, Lu P, Katona IM, Finkelman FD, Urban JF Jr, Gause WC (1993) A primary intestinal helminthic infection rapidly induces a gut-associated elevation of Th2-associated cytokines and IL-3. J Immunol 150(8 Pt 1):3434–3441PubMedGoogle Scholar
  52. 52.
    Lu P, Zhou X, Chen SJ, Moorman M, Morris SC, Finkelman FD, Linsley P, Urban JF, Gause WC (1994) CTLA-4 ligands are required to induce an in vivo interleukin 4 response to a gastrointestinal nematode parasite. J Exp Med 180(2):693–698CrossRefPubMedGoogle Scholar
  53. 53.
    Behnke JM, Wahid FN, Grencis RK, Else KJ, Ben-Smith AW, Goyal PK (1993) Immunological relationships during primary infection with Heligmosomoides polygyrus (Nematospiroides dubius): downregulation of specific cytokine secretion (IL-9 and IL-10) correlates with poor mastocytosis and chronic survival of adult worms. Parasite Immunol 15(7):415–421CrossRefPubMedGoogle Scholar
  54. 54.
    Reynolds LA, Maizels RM (2012) Cutting edge: in the absence of TGF-beta signaling in T cells, fewer CD103+ regulatory T cells develop, but exuberant IFN-gamma production renders mice more susceptible to helminth infection. J Immunol 189(3):1113–1117. doi:10.4049/jimmunol.1200991 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Carlow CK, Philipp M (1987) Protective immunity to Brugia malayi larvae in BALB/c mice: potential of this model for the identification of protective antigens. AmJTrop Med Hyg 37(3):597–604Google Scholar
  56. 56.
    Vickery AC, Vincent AL, Sodeman WA Jr (1983) Effect of immune reconstitution on resistance to Brugia pahangi in congenitally athymic nude mice. J Parasitol 69(3):478–485CrossRefPubMedGoogle Scholar
  57. 57.
    Bancroft AJ, Grencis RK, Else KJ, Devaney E (1993) Cytokine production in BALB/c mice immunized with radiation attenuated third stage larvae of the filarial nematode, Brugia pahangi. J Immunol 150(4):1395–1402PubMedGoogle Scholar
  58. 58.
    Bancroft AJ, Grencis RK, Else KJ, Devaney E (1994) The role of CD4 cells in protective immunity to Brugia pahangi. Parasite Immunol 16(7):385–387CrossRefPubMedGoogle Scholar
  59. 59.
    Anuradha R, George PJ, Hanna LE, Chandrasekaran V, Kumaran PP, Nutman TB, Babu S (2014) Parasite-antigen driven expansion of IL-5(-) and IL-5(+) Th2 human subpopulations in lymphatic filariasis and their differential dependence on IL-10 and TGFbeta. PLoS Negl Trop Dis 8(1):e2658. doi:10.1371/journal.pntd.0002658 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Blankenhaus B, Reitz M, Brenz Y, Eschbach ML, Hartmann W, Haben I, Sparwasser T, Huehn J, Kuhl A, Feyerabend TB, Rodewald HR, Breloer M (2014) Foxp3(+) regulatory T cells delay expulsion of intestinal nematodes by suppression of IL-9-driven mast cell activation in BALB/c but not in C57BL/6 mice. PLoS Pathog 10(2):e1003913. doi:10.1371/journal.ppat.1003913 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Anuradha R, Munisankar S, Bhootra Y, Jagannathan J, Dolla C, Kumaran P, Nutman TB, Babu S (2016) IL-10- and TGFbeta-mediated Th9 responses in a human helminth infection. PLoS Negl Trop Dis 10(1):e0004317. doi:10.1371/journal.pntd.0004317 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Anuradha R, Munisankar S, Bhootra Y, Jagannathan J, Dolla C, Kumaran P, Shen K, Nutman TB, Babu S (2016) Systemic cytokine profiles in Strongyloides stercoralis infection and alterations following treatment. Infect Immun 84(2):425–431. doi:10.1128/IAI.01354-15 CrossRefPubMedCentralGoogle Scholar
  63. 63.
    Cooper PJ, Chico ME, Sandoval C, Espinel I, Guevara A, Kennedy MW, Urban JF Jr, Griffin GE, Nutman TB (2000) Human infection with Ascaris lumbricoides is associated with a polarized cytokine response. The Journal of infectious diseases 182(4):1207–1213. doi:10.1086/315830 CrossRefPubMedGoogle Scholar
  64. 64.
    Turner JD, Faulkner H, Kamgno J, Cormont F, Van Snick J, Else KJ, Grencis RK, Behnke JM, Boussinesq M, Bradley JE (2003) Th2 cytokines are associated with reduced worm burdens in a human intestinal helminth infection. The Journal of infectious diseases 188(11):1768–1775. doi:10.1086/379370 CrossRefPubMedGoogle Scholar
  65. 65.
    Finkelman FD, Madden KB, Cheever AW, Katona IM, Morris SC, Gately MK, Hubbard BR, Gause WC, Urban JF Jr (1994) Effects of interleukin 12 on immune responses and host protection in mice infected with intestinal nematode parasites. J Exp Med 179(5):1563–1572CrossRefPubMedGoogle Scholar
  66. 66.
    Townsend JM, Fallon GP, Matthews JD, Smith P, Jolin EH, McKenzie NA (2000) IL-9-deficient mice establish fundamental roles for IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development. Immunity 13(4):573–583CrossRefPubMedGoogle Scholar
  67. 67.
    Fallon PG, Jolin HE, Smith P, Emson CL, Townsend MJ, Fallon R, Smith P, McKenzie AN (2002) IL-4 induces characteristic Th2 responses even in the combined absence of IL-5, IL-9, and IL-13. Immunity 17(1):7–17CrossRefPubMedGoogle Scholar
  68. 68.
    Kopf M, Le Gros G, Bachmann M, Lamers MC, Bluethmann H, Kohler G (1993) Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature 362(6417):245–248. doi:10.1038/362245a0 CrossRefPubMedGoogle Scholar
  69. 69.
    Urban JFNN-T Jr, Donaldson DD, Madden KB, Morris SC, Collins M, Finkelman FD (1998) IL-13, IL-4Ra, and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity 8:255–264CrossRefPubMedGoogle Scholar
  70. 70.
    Gaze S, McSorley HJ, Daveson J, Jones D, Bethony JM, Oliveira LM, Speare R, McCarthy JS, Engwerda CR, Croese J, Loukas A (2012) Characterising the mucosal and systemic immune responses to experimental human hookworm infection. PLoS Pathog 8(2):e1002520. doi:10.1371/journal.ppat.1002520 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Turner JE, Morrison PJ, Wilhelm C, Wilson M, Ahlfors H, Renauld JC, Panzer U, Helmby H, Stockinger B (2013) IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J Exp Med 210(13):2951–2965. doi:10.1084/jem.20130071 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Khalil RM, Luz A, Mailhammer R, Moeller J, Mohamed AA, Omran S, Dormer P, Hultner L (1996) Schistosoma mansoni infection in mice augments the capacity for interleukin 3 (IL-3) and IL-9 production and concurrently enlarges progenitor pools for mast cells and granulocytes-macrophages. Infect Immun 64(12):4960–4966PubMedPubMedCentralGoogle Scholar
  73. 73.
    Fallon PG, Smith P, Richardson EJ, Jones FJ, Faulkner HC, Van Snick J, Renauld JC, Grencis RK, Dunne DW (2000) Expression of interleukin-9 leads to Th2 cytokine-dominated responses and fatal enteropathy in mice with chronic Schistosoma mansoni infections. Infect Immun 68(10):6005–6011CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Mangan NE, Fallon RE, Smith P, van Rooijen N, McKenzie AN, Fallon PG (2004) Helminth infection protects mice from anaphylaxis via IL-10-producing B cells. J Immunol 173(10):6346–6356CrossRefPubMedGoogle Scholar
  75. 75.
    Pang N, Zhang F, Ma X, Zhang Z, Zhao H, Xin Y, Wang S, Zhu Y, Wen H, Ding J (2014) Th9/IL-9 profile in human echinococcosis: their involvement in immune response during infection by Echinococcus granulosus. Mediat Inflamm 2014:781649. doi:10.1155/2014/781649 CrossRefGoogle Scholar
  76. 76.
    Tuxun T, Apaer S, Ma HZ, Zhang H, Aierken A, Lin RY, Wen H (2015) The potential role of Th9 cell related cytokine and transcription factors in patients with hepatic alveolar echinococcosis. Journal of immunology research 2015:895416. doi:10.1155/2015/895416 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Gessner A, Blum H, Rollinghoff M (1993) Differential regulation of IL-9-expression after infection with Leishmania major in susceptible and resistant mice. Immunobiology 189(5):419–435. doi:10.1016/S0171-2985(11)80414-6 CrossRefPubMedGoogle Scholar
  78. 78.
    Nashed BF, Maekawa Y, Takashima M, Zhang T, Ishii K, Dainichi T, Ishikawa H, Sakai T, Hisaeda H, Himeno K (2000) Different cytokines are required for induction and maintenance of the Th2 type response in DBA/2 mice resistant to infection with Leishmania major. Microbes and infection / Institut Pasteur 2(12):1435–1443CrossRefGoogle Scholar
  79. 79.
    Arendse B, Van Snick J, Brombacher F (2005) IL-9 is a susceptibility factor in Leishmania major infection by promoting detrimental Th2/type 2 responses. J Immunol 174(4):2205–2211CrossRefPubMedGoogle Scholar
  80. 80.
    Hainard A, Tiberti N, Robin X, Lejon V, Ngoyi DM, Matovu E, Enyaru JC, Fouda C, Ndung'u JM, Lisacek F, Muller M, Turck N, Sanchez JC (2009) A combined CXCL10, CXCL8 and H-FABP panel for the staging of human African trypanosomiasis patients. PLoS Negl Trop Dis 3(6):e459. doi:10.1371/journal.pntd.0000459 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Guedes PM, de Andrade CM, Nunes DF, de Sena PN, Queiroga TB, Machado-Coelho GL, Nascimento MS, Do-Valle-Matta MA, da Camara AC, Chiari E, Galvao LM (2016) Inflammation enhances the risks of stroke and death in chronic Chagas disease patients. PLoS Negl Trop Dis 10(4):e0004669. doi:10.1371/journal.pntd.0004669 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Jain V, Armah HB, Tongren JE, Ned RM, Wilson NO, Crawford S, Joel PK, Singh MP, Nagpal AC, Dash AP, Udhayakumar V, Singh N, Stiles JK (2008) Plasma IP-10, apoptotic and angiogenic factors associated with fatal cerebral malaria in India. Malar J 7:83. doi:10.1186/1475-2875-7-83 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Houpt ER, Glembocki DJ, Obrig TG, Moskaluk CA, Lockhart LA, Wright RL, Seaner RM, Keepers TR, Wilkins TD, Petri WA Jr (2002) The mouse model of amebic colitis reveals mouse strain susceptibility to infection and exacerbation of disease by CD4+ T cells. J Immunol 169(8):4496–4503CrossRefPubMedGoogle Scholar
  84. 84.
    Li E, Zhou P, Petrin Z, Singer SM (2004) Mast cell-dependent control of Giardia lamblia infections in mice. Infect Immun 72(11):6642–6649. doi:10.1128/IAI.72.11.6642-6649.2004 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • P. Licona-Limón
    • 1
  • A. Arias-Rojas
    • 1
  • E. Olguín-Martínez
    • 1
  1. 1.Departamento de Biología Celular y del Desarrollo. Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMéxico CityMexico

Personalised recommendations