Advertisement

Seminars in Immunopathology

, Volume 39, Issue 1, pp 79–87 | Cite as

Th9 cells in the pathogenesis of EAE and multiple sclerosis

  • Wassim Elyaman
  • Samia J. Khoury
Review

Abstract

Interleukin (IL)-9 producing CD4+ T helper cells (Th9) are the newest addition to the T helper cell subsets. IL-9 binds to a heterodimeric receptor consisting of the IL-9 receptor (IL-9R) and a common γ chain also presents in IL-2, IL-4, IL-7, and IL-15 receptor complexes. In addition to Th9 cells, Th17 cells secrete smaller amounts of IL-9. Many functional and regulatory roles associated with Th9 cells are currently not fully understood. IL-9 is a pleiotropic cytokine that affects the activity of multiple cell types in the immune compartment as well as in the central nervous system (CNS). Initially implicated in type 2 inflammation, IL-9 has been recently shown to be a key player in regulating autoimmune responses in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Here, we review the current understanding of the role of Th9/IL-9 signaling in EAE and MS. We summarize the source and regulation of Th9 cells in vivo, the influence of IL-9 signaling on peripheral and CNS-resident cells in EAE, and the association between IL-9 and MS disease activity.

Keywords

Interleukin-9 T helper cells Immune regulation Autoimmunity EAE Multiple sclerosis 

Notes

Acknowledgements

We thank Dr. Jaime Imitola for his valuable comments. This work was supported by the Awards from the National Institutes of Health (AI093838 and AI043496 to SJK), the Massachusetts Life Sciences Center (RG110219 to WE), and the National Multiple Sclerosis Society (RG3945 to SJK/WE and PP1734 to WE).

References

  1. 1.
    Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, Khoury S, Oukka M, Kuchroo VK (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat Immunol 9(12):1347–1355CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C, Stockinger B (2008) Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9(12):1341–1346CrossRefPubMedGoogle Scholar
  3. 3.
    Kaiko GE, Horvat JC, Beagley KW, Hansbro PM (2008) Immunological decision-making: how does the immune system decide to mount a helper T-cell response? Immunology 123(3):326–338CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nylander A, Hafler DA (2012) Multiple sclerosis. J Clin Invest 122(4):1180–1188CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Traugott U, Reinherz EL, Raine CS (1983) Multiple sclerosis: distribution of T cell subsets within active chronic lesions. Science 219(4582):308–310CrossRefPubMedGoogle Scholar
  6. 6.
    Rangachari M, Kuchroo VK (2013) Using EAE to better understand principles of immune function and autoimmune pathology. J Autoimmun 45:31–39CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chen SJ, Wang YL, Fan HC, Lo WT, Wang CC, Sytwu HK (2012) Current status of the immunomodulation and immunomediated therapeutic strategies for multiple sclerosis. Clin devel immunol 2012:970789Google Scholar
  8. 8.
    Garris CS, Wu L, Acharya S, Arac A, Blaho VA, Huang Y, Moon BS, Axtell RC, Ho PP, Steinberg GK, Lewis DB, Sobel RA, Han DK, Steinman L, Snyder MP, Hla T, Han MH (2013) Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation. Nat Immunol 14(11):1166–1172CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Brucklacher-Waldert V, Stuerner K, Kolster M, Wolthausen J, Tolosa E (2009) Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. Brain 132(Pt 12):3329–3341CrossRefPubMedGoogle Scholar
  10. 10.
    Matsushita T, Tateishi T, Isobe N, Yonekawa T, Yamasaki R, Matsuse D, Murai H, Kira J (2013) Characteristic cerebrospinal fluid cytokine/chemokine profiles in neuromyelitis optica, relapsing remitting or primary progressive multiple sclerosis. PLoS One 8(4):e61835CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Darlington PJ, Touil T, Doucet JS, Gaucher D, Zeidan J, Gauchat D, Corsini R, Kim HJ, Duddy M, Jalili F, Arbour N, Kebir H, Chen J, Arnold DL, Bowman M, Antel J, Prat A, Freedman MS, Atkins H, Sekaly R, Cheynier R, Bar-Or A (2013) Diminished Th17 (not Th1) responses underlie multiple sclerosis disease abrogation after hematopoietic stem cell transplantation. Ann Neurol 73(3):341–354CrossRefPubMedGoogle Scholar
  12. 12.
    Schmitt E, Germann T, Goedert S, Hoehn P, Huels C, Koelsch S, Kuhn R, Muller W, Palm N, Rude E (1994) IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J Immunol 153(9):3989–3996PubMedGoogle Scholar
  13. 13.
    Elyaman W, Bradshaw EM, Uyttenhove C, Dardalhon V, Awasthi A, Imitola J, Bettelli E, Oukka M, van Snick J, Renauld JC, Kuchroo VK, Khoury SJ (2009) IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. PNAS 106(31):12885–12890CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nowak EC, Weaver CT, Turner H, Begum-Haque S, Becher B, Schreiner B, Coyle AJ, Kasper LH, Noelle RJ (2009) IL-9 as a mediator of Th17-driven inflammatory disease. J Exp Med 206(8):1653–1660CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chitnis T, Khoury SJ (2003) Role of costimulatory pathways in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. J Allergy Clin Immunol 112(5):837–849 quiz 850CrossRefPubMedGoogle Scholar
  16. 16.
    Keir ME, Sharpe AH (2005) The B7/CD28 costimulatory family in autoimmunity. Immunol Rev 204:128–143CrossRefPubMedGoogle Scholar
  17. 17.
    Amsen D, Antov A, Jankovic D, Sher A, Radtke F, Souabni A, Busslinger M, McCright B, Gridley T, Flavell RA (2007) Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity 27(1):89–99CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA (2004) Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117(4):515–526CrossRefPubMedGoogle Scholar
  19. 19.
    Bassil R, Zhu B, Lahoud Y, Riella LV, Yagita H, Elyaman W, Khoury SJ (2011) Notch ligand delta-like 4 blockade alleviates experimental autoimmune encephalomyelitis by promoting regulatory T cell development. J Immunol 187(5):2322–2328CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Elyaman W, Bassil R, Bradshaw EM, Orent W, Lahoud Y, Zhu B, Radtke F, Yagita H, Khoury SJ (2012) Notch receptors and Smad3 signaling cooperate in the induction of interleukin-9-producing T cells. Immunity 36(4):623–634CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Maekawa Y, Tsukumo S, Chiba S, Hirai H, Hayashi Y, Okada H, Kishihara K, Yasutomo K (2003) Delta1-Notch3 interactions bias the functional differentiation of activated CD4+ T cells. Immunity 19(4):549–559CrossRefPubMedGoogle Scholar
  22. 22.
    Minter LM, Turley DM, Das P, Shin HM, Joshi I, Lawlor RG, Cho OH, Palaga T, Gottipati S, Telfer JC, Kostura L, Fauq AH, Simpson K, Such KA, Miele L, Golde TE, Miller SD, Osborne BA (2005) Inhibitors of gamma-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nat Immunol 6(7):680–688CrossRefPubMedGoogle Scholar
  23. 23.
    Laky K, Evans S, Perez-Diez A, Fowlkes BJ (2015) Notch signaling regulates antigen sensitivity of naive CD4+ T cells by tuning co-stimulation. Immunity 42(1):80–94CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Amsen D, Antov A, Flavell RA (2009) The different faces of Notch in T-helper-cell differentiation. Nat Rev Immunol 9(2):116–124CrossRefPubMedGoogle Scholar
  25. 25.
    Xiao X, Balasubramanian S, Liu W, Chu X, Wang H, Taparowsky EJ, Fu YX, Choi Y, Walsh MC, Li XC (2012) OX40 signaling favors the induction of T(H)9 cells and airway inflammation. Nat Immunol 13(10):981–990CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ndhlovu LC, Ishii N, Murata K, Sato T, Sugamura K (2001) Critical involvement of OX40 ligand signals in the T cell priming events during experimental autoimmune encephalomyelitis. J Immunol 167(5):2991–2999CrossRefPubMedGoogle Scholar
  27. 27.
    Weinberg AD, Wegmann KW, Funatake C, Whitham RH (1999) Blocking OX-40/OX-40 ligand interaction in vitro and in vivo leads to decreased T cell function and amelioration of experimental allergic encephalomyelitis. J Immunol 162(3):1818–1826PubMedGoogle Scholar
  28. 28.
    Chitnis T, Najafian N, Abdallah KA, Dong V, Yagita H, Sayegh MH, Khoury SJ (2001) CD28-independent induction of experimental autoimmune encephalomyelitis. J Clin Invest 107(5):575–583CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gramaglia I, Weinberg AD, Lemon M, Croft M (1998) Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J Immunol 161(12):6510–6517PubMedGoogle Scholar
  30. 30.
    Rogers PR, Song J, Gramaglia I, Killeen N, Croft M (2001) OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 15(3):445–455CrossRefPubMedGoogle Scholar
  31. 31.
    Bauer JH, Liu KD, You Y, Lai SY, Goldsmith MA (1998) Heteromerization of the gammac chain with the interleukin-9 receptor alpha subunit leads to STAT activation and prevention of apoptosis. J Biol Chem 273(15):9255–9260CrossRefPubMedGoogle Scholar
  32. 32.
    Perdow-Hickman S, Salgame P (2000) Rescue of human T cells by interleukin-9 (IL-9) from IL-2 deprivation-induced apoptosis: correlation with alpha subunit expression of the IL-9 receptor. J Interf Cytokine Res 20(6):603–608CrossRefGoogle Scholar
  33. 33.
    Kundu-Raychaudhuri S, Abria C, Raychaudhuri SP (2016) IL-9, a local growth factor for synovial T cells in inflammatory arthritis. Cytokine 79:45–51CrossRefPubMedGoogle Scholar
  34. 34.
    Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, Wu C, Kleinewietfeld M, Kunder S, Hafler DA, Sobel RA, Regev A, Kuchroo VK (2012) Induction and molecular signature of pathogenic TH17 cells. Nat Immunol 13(10):991–999CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Murugaiyan G, Beynon V, Pires Da Cunha A, Joller N, Weiner HL (2012) IFN-gamma limits Th9-mediated autoimmune inflammation through dendritic cell modulation of IL-27. J Immunol 189(11):5277–5283CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Bassil R, Orent W, Olah M, Kurdi AT, Frangieh M, Buttrick T, Khoury SJ, Elyaman W (2014) BCL6 controls Th9 cell development by repressing Il9 transcription. J Immunol 193(1):198–207CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Liao W, Spolski R, Li P, Du N, West EE, Ren M, Mitra S, Leonard WJ (2014) Opposing actions of IL-2 and IL-21 on Th9 differentiation correlate with their differential regulation of BCL6 expression. PNAS 111(9):3508–3513CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tan C, Aziz MK, Lovaas JD, Vistica BP, Shi G, Wawrousek EF, Gery I (2010) Antigen-specific Th9 cells exhibit uniqueness in their kinetics of cytokine production and short retention at the inflammatory site. J Immunol 185(11):6795–6801CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jager A, Dardalhon V, Sobel RA, Bettelli E, Kuchroo VK (2009) Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J Immunol 183(11):7169–7177CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Hossain MM, Tsuchie H, Detorio MA, Shirono H, Hara C, Nishimoto A, Saji A, Koga J, Takata N, Maniar JK, Saple DG, Taniguchi K, Kageyama S, Ichimura H, Kurimura T (1998) Interleukin-9 receptor alpha chain mRNA formation in CD8+ T cells producing anti-human immunodeficiency virus type 1 substance(s). Acta Virol 42(1):47–53PubMedGoogle Scholar
  41. 41.
    Knoops L, Louahed J, Renauld JC (2004) IL-9-induced expansion of B-1b cells restores numbers but not function of B-1 lymphocytes in xid mice. J Immunol 172(10):6101–6106CrossRefPubMedGoogle Scholar
  42. 42.
    Stephens GL, Swerdlow B, Benjamin E, Coyle AJ, Humbles A, Kolbeck R, Fung M (2011) IL-9 is a Th17-derived cytokine that limits pathogenic activity in organ-specific autoimmune disease. Eur J Immunol 41(4):952–962CrossRefPubMedGoogle Scholar
  43. 43.
    Eller K, Wolf D, Huber JM, Metz M, Mayer G, McKenzie AN, Maurer M, Rosenkranz AR, Wolf AM (2010) IL-9 production by regulatory T cells recruits mast cells that are essential for regulatory T cell-induced immune suppression. J Immunol 186(1):83–91CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Shimbara A, Christodoulopoulos P, Soussi-Gounni A, Olivenstein R, Nakamura Y, Levitt RC, Nicolaides NC, Holroyd KJ, Tsicopoulos A, Lafitte JJ, Wallaert B, Hamid QA (2000) IL-9 and its receptor in allergic and nonallergic lung disease: increased expression in asthma. J Allergy Clin Immunol 105(1 Pt 1):108–115CrossRefPubMedGoogle Scholar
  45. 45.
    Sitkauskiene B, Radinger M, Bossios A, Johansson AK, Sakalauskas R, Lotvall J (2005) Airway allergen exposure stimulates bone marrow eosinophilia partly via IL-9. Respir Res 6:33CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Demoulin JB, Uyttenhove C, Van Roost E, DeLestre B, Donckers D, Van Snick J, Renauld JC (1996) A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol Cell Biol 16(9):4710–4716CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Knoops L, Renauld JC (2004) IL-9 and its receptor: from signal transduction to tumorigenesis. Growth Factors 22(4):207–215CrossRefPubMedGoogle Scholar
  48. 48.
    Lu LF, Lind EF, Gondek DC, Bennett KA, Gleeson MW, Pino-Lagos K, Scott ZA, Coyle AJ, Reed JL, Van Snick J, Strom TB, Zheng XX, Noelle RJ (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442(7106):997–1002CrossRefPubMedGoogle Scholar
  49. 49.
    Eller K, Wolf D, Huber JM, Metz M, Mayer G, McKenzie AN, Maurer M, Rosenkranz AR, Wolf AM (2011) IL-9 production by regulatory T cells recruits mast cells that are essential for regulatory T cell-induced immune suppression. J Immunol 186(1):83–91CrossRefPubMedGoogle Scholar
  50. 50.
    Wilhelm C, Hirota K, Stieglitz B, Van Snick J, Tolaini M, Lahl K, Sparwasser T, Helmby H, Stockinger B (2011) An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat Immunol 12(11):1071–1077CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yvon ES, Vigouroux S, Rousseau RF, Biagi E, Amrolia P, Dotti G, Wagner HJ, Brenner MK (2003) Overexpression of the Notch ligand, Jagged-1, induces alloantigen-specific human regulatory T cells. Blood 102(10):3815–3821CrossRefPubMedGoogle Scholar
  52. 52.
    Kared H, Adle-Biassette H, Fois E, Masson A, Bach JF, Chatenoud L, Schneider E, Zavala F (2006) Jagged2-expressing hematopoietic progenitors promote regulatory T cell expansion in the periphery through notch signaling. Immunity 25(5):823–834CrossRefPubMedGoogle Scholar
  53. 53.
    Schlapbach C, Gehad A, Yang C, Watanabe R, Guenova E, Teague JE, Campbell L, Yawalkar N, Kupper TS, Clark RA (2014) Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity. Sci Transl Med 6(219):219ra8CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Cosmi L, Liotta F, Angeli R, Mazzinghi B, Santarlasci V, Manetti R, Lasagni L, Vanini V, Romagnani P, Maggi E, Annunziato F, Romagnani S (2004) Th2 cells are less susceptible than Th1 cells to the suppressive activity of CD25+ regulatory thymocytes because of their responsiveness to different cytokines. Blood 103(8):3117–3121CrossRefPubMedGoogle Scholar
  55. 55.
    Druez C, Coulie P, Uyttenhove C, Van Snick J (1990) Functional and biochemical characterization of mouse P40/IL-9 receptors. J Immunol 145(8):2494–2499PubMedGoogle Scholar
  56. 56.
    Bruck W, Gold R, Lund BT, Oreja-Guevara C, Prat A, Spencer CM, Steinman L, Tintore M, Vollmer TL, Weber MS, Weiner LP, Ziemssen T, Zamvil SS (2013) Therapeutic decisions in multiple sclerosis: moving beyond efficacy. JAMA Neurol 70(10):1315–1324PubMedGoogle Scholar
  57. 57.
    Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, Langer-Gould A, Smith CH, Group HT (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358(7):676–688CrossRefPubMedGoogle Scholar
  58. 58.
    Petit-Frere C, Dugas B, Braquet P, Mencia-Huerta JM (1993) Interleukin-9 potentiates the interleukin-4-induced IgE and IgG1 release from murine B lymphocytes. Immunology 79(1):146–151PubMedPubMedCentralGoogle Scholar
  59. 59.
    Yao X, Kong Q, Xie X, Wang J, Li N, Liu Y, Sun B, Li Y, Wang G, Li W, Qu S, Zhao H, Wang D, Liu X, Zhang Y, Mu L, Li H (2014) Neutralization of interleukin-9 ameliorates symptoms of experimental autoimmune myasthenia gravis in rats by decreasing effector T cells and altering humoral responses. Immunology 143(3):396–405CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    S. Iwata, Y. Tanaka, Progress in understanding the safety and efficacy of Janus kinase inhibitors for treatment of rheumatoid arthritis, Expert Rev Clin Immunol (2016) 1–11.Google Scholar
  61. 61.
    Burkhardt J, Petit-Teixeira E, Teixeira VH, Kirsten H, Garnier S, Ruehle S, Oeser C, Wolfram G, Scholz M, Migliorini P, Balsa A, Westhovens R, Barrera P, Alves H, Pascual-Salcedo D, Bombardieri S, Dequeker J, Radstake TR, Van Riel P, van de Putte L, Bardin T, Prum B, Buchegger-Podbielski U, Emmrich F, Melchers I, Cornelis F, Ahnert P (2009) Association of the X-chromosomal genes TIMP1 and IL9R with rheumatoid arthritis. J Rheumatol 36(10):2149–2157CrossRefPubMedGoogle Scholar
  62. 62.
    Feng LL, Gao JM, Li PP, Wang X (2011) IL-9 contributes to immunosuppression mediated by regulatory T cells and mast cells in B-cell non-hodgkin's lymphoma. J Clin Immunol 31(6):1084–1094CrossRefPubMedGoogle Scholar
  63. 63.
    Ding X, Cao F, Cui L, Ciric B, Zhang GX, Rostami A (2015) IL-9 signaling affects central nervous system resident cells during inflammatory stimuli. Exp Mol Pathol 99(3):570–574CrossRefPubMedGoogle Scholar
  64. 64.
    Chang SH, Dong C (2011) Signaling of interleukin-17 family cytokines in immunity and inflammation. Cell Signal 23(7):1069–1075CrossRefPubMedGoogle Scholar
  65. 65.
    Zhou Y, Sonobe Y, Akahori T, Jin S, Kawanokuchi J, Noda M, Iwakura Y, Mizuno T, Suzumura A (2011) IL-9 promotes Th17 cell migration into the central nervous system via CC chemokine ligand-20 produced by astrocytes. J Immunol 186(7):4415–4421CrossRefPubMedGoogle Scholar
  66. 66.
    Butchi NB, Du M, Peterson KE (2010) Interactions between TLR7 and TLR9 agonists and receptors regulate innate immune responses by astrocytes and microglia. Glia 58(6):650–664PubMedPubMedCentralGoogle Scholar
  67. 67.
    Bsibsi M, Persoon-Deen C, Verwer RW, Meeuwsen S, Ravid R, Van Noort JM (2006) Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia 53(7):688–695CrossRefPubMedGoogle Scholar
  68. 68.
    Fontaine RH, Cases O, Lelievre V, Mesples B, Renauld JC, Loron G, Degos V, Dournaud P, Baud O, Gressens P (2008) IL-9/IL-9 receptor signaling selectively protects cortical neurons against developmental apoptosis. Cell Death Differ 15(10):1542–1552CrossRefPubMedGoogle Scholar
  69. 69.
    Constantinescu CS, Farooqi N, O'Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Muller DM, Pender MP, Greer JM (2000) A neuropathological analysis of experimental autoimmune encephalomyelitis with predominant brain stem and cerebellar involvement and differences between active and passive induction. Acta Neuropathol 100(2):174–182CrossRefPubMedGoogle Scholar
  71. 71.
    Storch MK, Stefferl A, Brehm U, Weissert R, Wallstrom E, Kerschensteiner M, Olsson T, Linington C, Lassmann H (1998) Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol 8(4):681–694CrossRefPubMedGoogle Scholar
  72. 72.
    Fernandez O, Arnal-Garcia C, Arroyo-Gonzalez R, Brieva L, Calles-Hernandez MC, Casanova-Estruch B, Comabella M, de las Heras V, Garcia-Merino JA, Hernandez-Perez MA, Izquierdo G, Matas E, Meca-Lallana JE, Mendibe-Bilbao Mdel M, Munoz-Garcia D, Olascoaga J, Oreja-Guevara C, Prieto JM, Ramio-Torrenta L, Rodriguez-Antiguedad A, Saiz A, Tellez N, Villar LM, Tintore M, E.G. Post (2013) Review of the novelties presented at the 28th Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) (III). Rev Neurol 57(7):317–329PubMedGoogle Scholar
  73. 73.
    Li H, Nourbakhsh B, Ciric B, Zhang GX, Rostami A (2010) Neutralization of IL-9 ameliorates experimental autoimmune encephalomyelitis by decreasing the effector T cell population. J Immunol 185(7):4095–4100CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Li H, Nourbakhsh B, Cullimore M, Zhang GX, Rostami A (2011) IL-9 is important for T-cell activation and differentiation in autoimmune inflammation of the central nervous system. Eur J Immunol 41(8):2197–2206CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Muls N, Jnaoui K, Dang HA, Wauters A, Van Snick J, Sindic CJ, van Pesch V (2012) Upregulation of IL-17, but not of IL-9, in circulating cells of CIS and relapsing MS patients. Impact of corticosteroid therapy on the cytokine network. J Neuroimmunol 243(1–2):73–80CrossRefPubMedGoogle Scholar
  76. 76.
    Ruocco G, Rossi S, Motta C, Macchiarulo G, Barbieri F, De Bardi M, Borsellino G, Finardi A, Grasso MG, Ruggieri S, Gasperini C, Furlan R, Centonze D, Battistini L, Volpe E (2015) T helper 9 cells induced by plasmacytoid dendritic cells regulate interleukin-17 in multiple sclerosis. Clin Sci (Lond) 129(4):291–303CrossRefGoogle Scholar
  77. 77.
    Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, Regev A, Kuchroo VK (2013) Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496(7446):513–517CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Ann Romney Center for Neurologic DiseasesBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Abu Haidar Neuroscience InstituteAmerican University of Beirut Medical CenterBeirutLebanon

Personalised recommendations