Advertisement

Seminars in Immunopathology

, Volume 38, Issue 3, pp 371–383 | Cite as

Role of renal TRP channels in physiology and pathology

  • Viktor Tomilin
  • Mykola Mamenko
  • Oleg Zaika
  • Oleh PochynyukEmail author
Review

Abstract

Kidneys critically contribute to the maintenance of whole-body homeostasis by governing water and electrolyte balance, controlling extracellular fluid volume, plasma osmolality, and blood pressure. Renal function is regulated by numerous systemic endocrine and local mechanical stimuli. Kidneys possess a complex network of membrane receptors, transporters, and ion channels which allows responding to this wide array of signaling inputs in an integrative manner. Transient receptor potential (TRP) channel family members with diverse modes of activation, varied permeation properties, and capability to integrate multiple downstream signals are pivotal molecular determinants of renal function all along the nephron. This review summarizes experimental data on the role of TRP channels in a healthy mammalian kidney and discusses their involvement in renal pathologies.

Keywords

Epithelial transport glomerular disease mechanosensitivity TRPC6 TRPM6 TRPV5 TRPV4 TRPP2 

Notes

Acknowledgments

The research program in Dr. Pochynyuk’s lab is supported by NIH-NIDDK DK095029 (to O. Pochynyuk), and by AHA- 15SDG25550150 (to M. Mamenko).

References

  1. 1.
    Curthoys NP, Moe OW (2014) Proximal tubule function and response to acidosis. Clin J Am Soc Nephrol 9:1627–1638PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Mount DB (2014) Thick ascending limb of the loop of Henle. Clin J Am Soc Nephrol 9:1974–1986PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Staruschenko A (2012) Regulation of transport in the connecting tubule and cortical collecting duct. Comprehen Physiol 2:1541–1584Google Scholar
  4. 4.
    Subramanya AR, Ellison DH (2014) Distal convoluted tubule. Clin J Am Soc Nephrol 9:2147–2163PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104:545–556PubMedCrossRefGoogle Scholar
  6. 6.
    Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Goel M, Sinkins WG, Zuo CD, Estacion M, Schilling WP (2006) Identification and localization of TRPC channels in the rat kidney. Am J Physiol Ren Physiol 290:F1241–F1252CrossRefGoogle Scholar
  8. 8.
    Berrout J, Jin M, Mamenko M, Zaika O, Pochynyuk O, O’Neil RG (2012) Function of TRPV4 as a mechanical transducer in flow-sensitive segments of the renal collecting duct system. J Biol Chem 287:8782–8791PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH, Willems PH et al (1999) Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem 274:8375–8378Google Scholar
  10. 10.
    Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ et al (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279:19–25Google Scholar
  11. 11.
    Pollak MR, Quaggin SE, Hoenig MP, Dworkin LD (2014) The glomerulus: the sphere of influence. Clin J Am Soc Nephrol 9:1461–1469PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Tanner GA, Rippe C, Shao Y, Evan AP, Williams JC Jr (2009) Glomerular permeability to macromolecules in the Necturus kidney. Am J Physiol Ren Physiol 296:F1269–F1278CrossRefGoogle Scholar
  13. 13.
    Neal CR, Crook H, Bell E, Harper SJ, Bates DO (2005) Three-dimensional reconstruction of glomeruli by electron microscopy reveals a distinct restrictive urinary subpodocyte space. J Am Soc Nephrol 16:1223–1235PubMedCrossRefGoogle Scholar
  14. 14.
    Kim YH, Goyal M, Kurnit D, Wharram B, Wiggins J, Holzman L et al (2001) Podocyte depletion and glomerulosclerosis have a direct relationship in the PAN-treated rat. Kidney Int 60:957–968PubMedCrossRefGoogle Scholar
  15. 15.
    Mundel P, Reiser J (2010) Proteinuria: an enzymatic disease of the podocyte? Kidney Int 77:571–580PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Peti-Peterdi J, Sipos A (2010) A high-powered view of the filtration barrier. J Am Soc Nephrol 21:1835–1841PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF et al (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804PubMedCrossRefGoogle Scholar
  18. 18.
    Endlich N, Kress KR, Reiser J, Uttenweiler D, Kriz W, Mundel P et al (2001) Podocytes respond to mechanical stress in vitro. J Am Soc Nephrol 12:413–422PubMedGoogle Scholar
  19. 19.
    Friedrich C, Endlich N, Kriz W, Endlich K (2006) Podocytes are sensitive to fluid shear stress in vitro. Am J Physiol Ren Physiol 291:F856–F865CrossRefGoogle Scholar
  20. 20.
    Kim EY, Alvarez-Baron CP, Dryer SE (2009) Canonical transient receptor potential channel (TRPC)3 and TRPC6 associate with large-conductance Ca2+ −activated K+ (BKCa) channels: role in BKCa trafficking to the surface of cultured podocytes. Mol Pharmacol 75:466–477Google Scholar
  21. 21.
    Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C et al (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Greka A, Mundel P (2011) Balancing calcium signals through TRPC5 and TRPC6 in podocytes. J Am Soc Nephrol 22:1969–1980PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Schaldecker T, Kim S, Tarabanis C, Tian D, Hakroush S, Castonguay P et al (2013) Inhibition of the TRPC5 ion channel protects the kidney filter. J Clin Invest 123:5298–5309PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Estacion M, Sinkins WG, Jones SW, Applegate MA, Schilling WP (2006) Human TRPC6 expressed in HEK 293 cells forms non-selective cation channels with limited Ca2+ permeability. J Physiol 572:359–377Google Scholar
  25. 25.
    Shi J, Mori E, Mori Y, Mori M, Li J, Ito Y et al (2004) Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol 561:415–432PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Dietrich A, Mederos y Schnitzler M, Emmel J, Kalwa H, Hofmann T, Gudermann T (2003) N-linked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity. J Biol Chem 278:47842–47852PubMedCrossRefGoogle Scholar
  27. 27.
    Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T et al (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279:18887–18894PubMedCrossRefGoogle Scholar
  28. 28.
    Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 103:16586–16591PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Huber TB, Schermer B, Muller RU, Hohne M, Bartram M, Calixto A et al (2006) Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci USA 103:17079–17086PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Huber TB, Schermer B, Benzing T (2007) Podocin organizes ion channel-lipid supercomplexes: implications for mechanosensation at the slit diaphragm. Nephron Exp Nephrol 106:e27–e31PubMedCrossRefGoogle Scholar
  31. 31.
    Huber TB, Kottgen M, Schilling B, Walz G, Benzing T (2001) Interaction with podocin facilitates nephrin signaling. J Biol Chem 276:41543–41546PubMedCrossRefGoogle Scholar
  32. 32.
    Kim EY, Anderson M, Wilson C, Hagmann H, Benzing T, Dryer SE (2013) NOX2 interacts with podocyte TRPC6 channels and contributes to their activation by diacylglycerol: essential role of podocin in formation of this complex. Am J Physiol Cell Physiol 305:C960–C971PubMedCrossRefGoogle Scholar
  33. 33.
    Kanda S, Harita Y, Shibagaki Y, Sekine T, Igarashi T, Inoue T et al (2011) Tyrosine phosphorylation-dependent activation of TRPC6 regulated by PLC-gamma1 and nephrin: effect of mutations associated with focal segmental glomerulosclerosis. Mol Biol Cell 22:1824–1835PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Jiang L, Ding J, Tsai H, Li L, Feng Q, Miao J et al (2011) Over-expressing transient receptor potential cation channel 6 in podocytes induces cytoskeleton rearrangement through increases of intracellular Ca2+ and RhoA activation. Exp Biol Med 236:184–193Google Scholar
  35. 35.
    Endlich N, Endlich K (2012) The challenge and response of podocytes to glomerular hypertension. Semin Nephrol 32:327–341PubMedCrossRefGoogle Scholar
  36. 36.
    Heeringa SF, Moller CC, Du J, Yue L, Hinkes B, Chernin G et al (2009) A novel TRPC6 mutation that causes childhood FSGS. PLoS One 4:e7771PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Dryer SE, Reiser J (2010) TRPC6 channels and their binding partners in podocytes: role in glomerular filtration and pathophysiology. Am J Physiol Ren Physiol 299:F689–F701CrossRefGoogle Scholar
  38. 38.
    Krall P, Canales CP, Kairath P, Carmona-Mora P, Molina J, Carpio JD et al (2010) Podocyte-specific overexpression of wild type or mutant TRPC6 in mice is sufficient to cause glomerular disease. PLoS One 5:e12859Google Scholar
  39. 39.
    Kistler AD, Singh G, Altintas MM, Yu H, Fernandez IC, Gu C et al (2013) Transient receptor potential channel 6 (TRPC6) protects podocytes during complement-mediated glomerular disease. J Biol Chem 288:36598–36609PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Woroniecki RP, Kopp JB (2007) Genetics of focal segmental glomerulosclerosis. Pediatr Nephrol 22:638–644PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Anderson M, Kim EY, Hagmann H, Benzing T, Dryer SE (2013) Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. Am J Physiol Cell Physiol 305:C276–C289PubMedCrossRefGoogle Scholar
  42. 42.
    Ma L, Fogo AB (2001) Role of angiotensin II in glomerular injury. Semin Nephrol 21:544–553PubMedCrossRefGoogle Scholar
  43. 43.
    Ilatovskaya DV, Palygin O, Chubinskiy-Nadezhdin V, Negulyaev YA, Ma R, Birnbaumer L et al (2014) Angiotensin II has acute effects on TRPC6 channels in podocytes of freshly isolated glomeruli. Kidney Int 86:506–514PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Anderson M, Roshanravan H, Khine J, Dryer SE (2014) Angiotensin II activation of TRPC6 channels in rat podocytes requires generation of reactive oxygen species. J Cell Physiol 229:434–442PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang H, Ding J, Fan Q, Liu S (2009) TRPC6 up-regulation in Ang II-induced podocyte apoptosis might result from ERK activation and NF-kappaB translocation. Exp Biol Med 234:1029–1036CrossRefGoogle Scholar
  46. 46.
    Nijenhuis T, Sloan AJ, Hoenderop JG, Flesche J, van Goor H, Kistler AD et al (2011) Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway. Am J Pathol 179:1719–1732PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Chi X, Hu B, Yu SY, Yin L, Meng Y, Wang B, et al. (2015) Losartan treating podocyte injury induced by Ang II via downregulation of TRPC6 in podocytes. J Renin Angiotensin Aldosterone Syst (in press)Google Scholar
  48. 48.
    Diez-Sampedro A, Lenz O, Fornoni A (2011) Podocytopathy in diabetes: a metabolic and endocrine disorder. Am J Kidney Dis 58:637–646PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Jefferson JA, Shankland SJ, Pichler RH (2008) Proteinuria in diabetic kidney disease: a mechanistic viewpoint. Kidney Int 74:22–36PubMedCrossRefGoogle Scholar
  50. 50.
    Sonneveld R, van der Vlag J, Baltissen MP, Verkaart SA, Wetzels JF, Berden JH et al (2014) Glucose specifically regulates TRPC6 expression in the podocyte in an AngII-dependent manner. Am J Pathol 184:1715–1726PubMedCrossRefGoogle Scholar
  51. 51.
    Durvasula RV, Shankland SJ (2008) Activation of a local renin angiotensin system in podocytes by glucose. Am J Physiol Ren Physiol 294:F830–F839CrossRefGoogle Scholar
  52. 52.
    Thilo F, Lee M, Xia S, Zakrzewicz A, Tepel M (2014) High glucose modifies transient receptor potential canonical type 6 channels via increased oxidative stress and syndecan-4 in human podocytes. Biochem Biophys Res Commun 450:312–317PubMedCrossRefGoogle Scholar
  53. 53.
    Graham S, Ding M, Sours-Brothers S, Yorio T, Ma JX, Ma R (2007) Downregulation of TRPC6 protein expression by high glucose, a possible mechanism for the impaired Ca2+ signaling in glomerular mesangial cells in diabetes. Am J Physiol Ren Physiol 293:F1381–F1390Google Scholar
  54. 54.
    Vallon V (2008) P2 receptors in the regulation of renal transport mechanisms. Am J Physiol Ren Physiol 294:F10–F27CrossRefGoogle Scholar
  55. 55.
    Roshanravan H, Dryer SE (2014) ATP acting through P2Y receptors causes activation of podocyte TRPC6 channels: role of podocin and reactive oxygen species. Am J Physiol Ren Physiol 306:F1088–F1097CrossRefGoogle Scholar
  56. 56.
    Chen S, Meng XF, Zhang C (2013) Role of NADPH oxidase-mediated reactive oxygen species in podocyte injury. Bio Med Res Int 2013:839761Google Scholar
  57. 57.
    Luan J, Li W, Han J, Zhang W, Gong H, Ma R (2012) Renal protection of in vivo administration of tempol in streptozotocin-induced diabetic rats. J Pharmacol Sci 119:167–176PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Eckel J, Lavin PJ, Finch EA, Mukerji N, Burch J, Gbadegesin R et al (2011) TRPC6 enhances angiotensin II-induced albuminuria. J Am Soc Nephrol 22:526–535PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Rieg T, Vallon V, Sausbier M, Sausbier U, Kaissling B, Ruth P et al (2007) The role of the BK channel in potassium homeostasis and flow-induced renal potassium excretion. Kidney Int 72:566–573PubMedCrossRefGoogle Scholar
  60. 60.
    Grimm PR, Irsik DL, Settles DC, Holtzclaw JD, Sansom SC (2009) Hypertension of Kcnmb1−/− is linked to deficient K secretion and aldosteronism. Proc Natl Acad Sci USA 106:11800–11805PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Forst AL, Olteanu VS, Mollet G, Wlodkowski T, Schaefer F, Dietrich A, et al. (2015) Podocyte purinergic P2X4 channels are mechanotransducers that mediate cytoskeletal disorganization. J Am Soc Nephrol (in press)Google Scholar
  62. 62.
    Hebert SC, Brown EM (1996) The scent of an ion: calcium-sensing and its roles in health and disease. Curr Opin Nephrol Hypertens 5:45–53PubMedCrossRefGoogle Scholar
  63. 63.
    Konrad M, Schlingmann KP, Gudermann T (2004) Insights into the molecular nature of magnesium homeostasis. Am J Physiol Ren Physiol 286:F599–F605CrossRefGoogle Scholar
  64. 64.
    Blaine J, Chonchol M, Levi M (2015) Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol 10:1257–1272PubMedCrossRefGoogle Scholar
  65. 65.
    Woudenberg-Vrenken TE, Sukinta A, van der Kemp AW, Bindels RJ, Hoenderop JG (2011) Transient receptor potential melastatin 6 knockout mice are lethal whereas heterozygous deletion results in mild hypomagnesemia. Nephron Physiol 117:p11–p19PubMedCrossRefGoogle Scholar
  66. 66.
    Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW, Merillat AM et al (2003) Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest 112:1906–1914Google Scholar
  67. 67.
    Bianco SD, Peng JB, Takanaga H, Suzuki Y, Crescenzi A, Kos CH et al (2007) Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J Bone Miner Res 22:274–285PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    McCormick JA, Ellison DH (2015) Distal convoluted tubule. Comprehen Physiol 5:45–98Google Scholar
  69. 69.
    Loffing J, Zecevic M, Feraille E, Kaissling B, Asher C, Rossier BC et al (2001) Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK. Am J Physiol Ren Physiol 280:F675–F682Google Scholar
  70. 70.
    Woudenberg-Vrenken TE, Bindels RJ, Hoenderop JG (2009) The role of transient receptor potential channels in kidney disease. Nat Rev Nephrol 5:441–449PubMedCrossRefGoogle Scholar
  71. 71.
    Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K et al (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31:166–170PubMedCrossRefGoogle Scholar
  72. 72.
    Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z et al (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31:171–174PubMedCrossRefGoogle Scholar
  73. 73.
    Lainez S, Schlingmann KP, van der Wijst J, Dworniczak B, van Zeeland F, Konrad M et al (2014) New TRPM6 missense mutations linked to hypomagnesemia with secondary hypocalcemia. Eur J Hum Genet 22:497–504PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Schlingmann KP, Waldegger S, Konrad M, Chubanov V, Gudermann T (2007) TRPM6 and TRPM7—Gatekeepers of human magnesium metabolism. Biochim Biophys Acta 1772:813–821PubMedCrossRefGoogle Scholar
  75. 75.
    Quamme GA (2008) Recent developments in intestinal magnesium absorption. Curr Opin Gastroenterol 24:230–235PubMedCrossRefGoogle Scholar
  76. 76.
    Chubanov V, Gudermann T (2014) TRPM6. Handb Exp Pharmacol 222:503–520Google Scholar
  77. 77.
    Goytain A, Quamme GA (2005) Functional characterization of human SLC41A1, a Mg2+ transporter with similarity to prokaryotic MgtE Mg2+ transporters. Physiol Genomics 21:337–342Google Scholar
  78. 78.
    Kolisek M, Launay P, Beck A, Sponder G, Serafini N, Brenkus M et al (2008) SLC41A1 is a novel mammalian Mg2+ carrier. J Biol Chem 283:16235–16247Google Scholar
  79. 79.
    Thebault S, Cao G, Venselaar H, Xi Q, Bindels RJ, Hoenderop JG (2008) Role of the alpha-kinase domain in transient receptor potential melastatin 6 channel and regulation by intracellular ATP. J Biol Chem 283:19999–20007PubMedCrossRefGoogle Scholar
  80. 80.
    Li M, Jiang J, Yue L (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127:525–537PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Schmitz C, Dorovkov MV, Zhao X, Davenport BJ, Ryazanov AG, Perraud AL (2005) The channel kinases TRPM6 and TRPM7 are functionally nonredundant. J Biol Chem 280:37763–37771PubMedCrossRefGoogle Scholar
  82. 82.
    Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE (2008) Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322:756–760Google Scholar
  83. 83.
    Glaudemans B, van der Wijst J, Scola RH, Lorenzoni PJ, Heister A, van der Kemp AW et al (2009) A missense mutation in the Kv1.1 voltage-gated potassium channel-encoding gene KCNA1 is linked to human autosomal dominant hypomagnesemia. J Clin Invest 119:936–942Google Scholar
  84. 84.
    van der Wijst J, Glaudemans B, Venselaar H, Nair AV, Forst AL, Hoenderop JG et al (2010) Functional analysis of the Kv1.1 N255D mutation associated with autosomal dominant hypomagnesemia. J Biol Chem 285:171–178Google Scholar
  85. 85.
    Bockenhauer D, Feather S, Stanescu HC, Bandulik S, Zdebik AA, Reichold M et al (2009) Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med 360:1960–1970PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Scholl UI, Choi M, Liu T, Ramaekers VT, Hausler MG, Grimmer J et al (2009) Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci USA 106:5842–5847PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Groenestege WM, Hoenderop JG, van den Heuvel L, Knoers N, Bindels RJ (2006) The epithelial Mg2+ channel transient receptor potential melastatin 6 is regulated by dietary Mg2+ content and estrogens. J Am Soc Nephrol 17:1035–1043Google Scholar
  88. 88.
    Thebault S, Alexander RT, Tiel Groenestege WM, Hoenderop JG, Bindels RJ (2009) EGF increases TRPM6 activity and surface expression. J Am Soc Nephrol 20:78–85PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Nair AV, Hocher B, Verkaart S, van Zeeland F, Pfab T, Slowinski T et al (2012) Loss of insulin-induced activation of TRPM6 magnesium channels results in impaired glucose tolerance during pregnancy. Proc Natl Acad Sci USA 109:11324–11329PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Cao G, van der Wijst J, van der Kemp A, van Zeeland F, Bindels RJ, Hoenderop JG (2009) Regulation of the epithelial Mg2+ channel TRPM6 by estrogen and the associated repressor protein of estrogen receptor activity (REA). J Biol Chem 284:14788–14795Google Scholar
  91. 91.
    Schrag D, Chung KY, Flombaum C, Saltz L (2005) Cetuximab therapy and symptomatic hypomagnesemia. J Natl Cancer Inst 97:1221–1224PubMedCrossRefGoogle Scholar
  92. 92.
    Ledeganck KJ, Boulet GA, Bogers JJ, Verpooten GA, De Winter BY (2013) The TRPM6/EGF pathway is downregulated in a rat model of cisplatin nephrotoxicity. PLoS One 8:e57016PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Blanchard MG, Kittikulsuth W, Nair AV, de Baaij JH, Latta F, Genzen JR, et al. (2015) Regulation of Mg2+ reabsorption and transient receptor potential melastatin type 6 Activity by cAMP signaling. J Am Soc Nephrol (in press)Google Scholar
  94. 94.
    Mastrototaro L, Trapani V, Boninsegna A, Martin H, Devaux S, Berthelot A et al (2011) Dietary Mg2+ regulates the epithelial Mg2+ channel TRPM6 in rat mammary tissue. Magnes Res 24:S122–S129Google Scholar
  95. 95.
    Lennon EJ, Piering WF (1970) A comparison of the effects of glucose ingestion and NH4Cl acidosis on urinary calcium and magnesium excretion in man. J Clin Invest 49:1458–1465PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Blumberg D, Bonetti A, Jacomella V, Capillo S, Truttmann AC, Luthy CM et al (1998) Free circulating magnesium and renal magnesium handling during acute metabolic acidosis in humans. Am J Nephrol 18:233–236PubMedCrossRefGoogle Scholar
  97. 97.
    Nijenhuis T, Renkema KY, Hoenderop JG, Bindels RJ (2006) Acid–base status determines the renal expression of Ca2+ and Mg2+ transport proteins. J Am Soc Nephrol 17:617–626PubMedCrossRefGoogle Scholar
  98. 98.
    Wong NL, Quamme GA, Dirks JH (1986) Effects of acid–base disturbances on renal handling of magnesium in the dog. Clin Sci 70:277–284PubMedCrossRefGoogle Scholar
  99. 99.
    Lambers TT, Bindels RJ, Hoenderop JG (2006) Coordinated control of renal Ca2+ handling. Kidney Int 69:650–654PubMedCrossRefGoogle Scholar
  100. 100.
    Lambers TT, Mahieu F, Oancea E, Hoofd L, de Lange F, Mensenkamp AR et al (2006) Calbindin-D28K dynamically controls TRPV5-mediated Ca2+ transport. EMBO J 25:2978–2988PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Vennekens R, Hoenderop JG, Prenen J, Stuiver M, Willems PH, Droogmans G et al (2000) Permeation and gating properties of the novel epithelial Ca2+ channel. J Biol Chem 275:3963–3969PubMedCrossRefGoogle Scholar
  102. 102.
    Yue L, Peng JB, Hediger MA, Clapham DE (2001) CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature 410:705–709PubMedCrossRefGoogle Scholar
  103. 103.
    Hoenderop JG, van der Kemp AW, Hartog A, van Os CH, Willems PH, Bindels RJ (1999) The epithelial calcium channel, ECaC, is activated by hyperpolarization and regulated by cytosolic calcium. Biochem Biophys Res Commun 261:488–492PubMedCrossRefGoogle Scholar
  104. 104.
    Nijenhuis T, Hoenderop JG, van der Kemp AW, Bindels RJ (2003) Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J Am Soc Nephrol 14:2731–2740PubMedCrossRefGoogle Scholar
  105. 105.
    Song Y, Peng X, Porta A, Takanaga H, Peng JB, Hediger MA et al (2003) Calcium transporter 1 and epithelial calcium channel messenger ribonucleic acid are differentially regulated by 1,25 dihydroxyvitamin D3 in the intestine and kidney of mice. Endocrinology 144:3885–3894PubMedCrossRefGoogle Scholar
  106. 106.
    Van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, Van Herck E, Kato S et al (2001) Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Proc Natl Acad Sci USA 98:13324–13329PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Peng JB (2011) TRPV5 and TRPV6 in transcellular Ca2+ transport: regulation, gene duplication, and polymorphisms in African populations. Adv Exp Med Biol 704:239–275PubMedCrossRefGoogle Scholar
  108. 108.
    Jang HR, Kim S, Heo NJ, Lee JH, Kim HS, Nielsen S et al (2009) Effects of thiazide on the expression of TRPV5, calbindin-D28K, and sodium transporters in hypercalciuric rats. J Korean Med Sci 24(Suppl):S161–S169PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Nijenhuis T, Hoenderop JG, Loffing J, van der Kemp AW, van Os CH, Bindels RJ (2003) Thiazide-induced hypocalciuria is accompanied by a decreased expression of Ca2+ transport proteins in kidney. Kidney Int 64:555–564PubMedCrossRefGoogle Scholar
  110. 110.
    Lee CT, Shang S, Lai LW, Yong KC, Lien YH (2004) Effect of thiazide on renal gene expression of apical calcium channels and calbindins. Am J Physiol Ren Physiol 287:F1164–F1170CrossRefGoogle Scholar
  111. 111.
    de Groot T, Lee K, Langeslag M, Xi Q, Jalink K, Bindels RJ et al (2009) Parathyroid hormone activates TRPV5 via PKA-dependent phosphorylation. J Am Soc Nephrol 20:1693–1704PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    van der Hagen EA, Tudpor K, Verkaart S, Lavrijsen M, van der Kemp A, van Zeeland F et al (2014) beta1-Adrenergic receptor signaling activates the epithelial calcium channel, transient receptor potential vanilloid type 5 (TRPV5), via the protein kinase A pathway. J Biol Chem 289:18489–18496PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Hoenderop JG, De Pont JJ, Bindels RJ, Willems PH (1999) Hormone-stimulated Ca2+ reabsorption in rabbit kidney cortical collecting system is cAMP-independent and involves a phorbol ester-insensitive PKC isotype. Kidney Int 55:225–233PubMedCrossRefGoogle Scholar
  114. 114.
    Friedman PA, Coutermarsh BA, Kennedy SM, Gesek FA (1996) Parathyroid hormone stimulation of calcium transport is mediated by dual signaling mechanisms involving protein kinase A and protein kinase C. Endocrinology 137:13–20PubMedGoogle Scholar
  115. 115.
    Cha SK, Wu T, Huang CL (2008) Protein kinase C inhibits caveolae-mediated endocytosis of TRPV5. Am J Physiol Ren Physiol 294:F1212–F1221CrossRefGoogle Scholar
  116. 116.
    Kumar R, Schaefer J, Grande JP, Roche PC (1994) Immunolocalization of calcitriol receptor, 24-hydroxylase cytochrome P-450, and calbindin D28k in human kidney. Am J Physiol 266:F477–F485PubMedGoogle Scholar
  117. 117.
    Malloy PJ, Feldman D (1999) Vitamin D resistance. Am J Med 106:355–370PubMedCrossRefGoogle Scholar
  118. 118.
    Durmaz E, Zou M, Al-Rijjal RA, Bircan I, Akcurin S, Meyer B et al (2012) Clinical and genetic analysis of patients with vitamin D-dependent rickets type 1A. Clin Endocrinol 77:363–369CrossRefGoogle Scholar
  119. 119.
    Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51PubMedCrossRefGoogle Scholar
  120. 120.
    Torres PU, Prie D, Molina-Bletry V, Beck L, Silve C, Friedlander G (2007) Klotho: an antiaging protein involved in mineral and vitamin D metabolism. Kidney Int 71:730–737PubMedCrossRefGoogle Scholar
  121. 121.
    Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG (2005) The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310:490–493PubMedCrossRefGoogle Scholar
  122. 122.
    Wolf MT, An SW, Nie M, Bal MS, Huang CL (2014) Klotho up-regulates renal calcium channel transient receptor potential vanilloid 5 (TRPV5) by intra- and extracellular N-glycosylation-dependent mechanisms. J Biol Chem 289:35849–35857PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Alexander RT, Woudenberg-Vrenken TE, Buurman J, Dijkman H, van der Eerden BC, van Leeuwen JP et al (2009) Klotho prevents renal calcium loss. J Am Soc Nephrol 20:2371–2379PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Weinbaum S, Duan Y, Satlin LM, Wang T, Weinstein AM (2010) Mechanotransduction in the renal tubule. Am J Physiol Ren Physiol 299:F1220–F1236CrossRefGoogle Scholar
  125. 125.
    Satlin LM, Carattino MD, Liu W, Kleyman TR (2006) Regulation of cation transport in the distal nephron by mechanical forces. Am J Physiol Ren Physiol 291:F923–F931CrossRefGoogle Scholar
  126. 126.
    Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM (2003) Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Ren Physiol 285:F998–F1012CrossRefGoogle Scholar
  127. 127.
    Woda CB, Leite M Jr, Rohatgi R, Satlin LM (2002) Effects of luminal flow and nucleotides on [Ca2+]i in rabbit cortical collecting duct. Am J Physiol Ren Physiol 283:F437–F446CrossRefGoogle Scholar
  128. 128.
    Geyti CS, Odgaard E, Overgaard MT, Jensen ME, Leipziger J, Praetorius HA (2008) Slow spontaneous [Ca2+]i oscillations reflect nucleotide release from renal epithelia. Pflugers Arch 455:1105–1117PubMedCrossRefGoogle Scholar
  129. 129.
    Praetorius HA, Leipziger J (2009) Released nucleotides amplify the cilium-dependent, flow-induced [Ca2+]i response in MDCK cells. Acta Physiol (Oxf) 197:241–251CrossRefGoogle Scholar
  130. 130.
    Sipos A, Vargas SL, Toma I, Hanner F, Willecke K, Peti-Peterdi J (2009) Connexin 30 deficiency impairs renal tubular ATP release and pressure natriuresis. J Am Soc Nephrol 20:1724–1732PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Mamenko M, Zaika OL, Boukelmoune N, Berrout J, O’Neil RG, Pochynyuk O (2013) Discrete control of TRPV4 channel function in the distal nephron by protein kinases A and C. J Biol Chem 288:20306–20314PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Mamenko M, Zaika O, Jin M, O’Neil RG, Pochynyuk O (2011) Purinergic activation of ca-permeable TRPV4 channels is essential for mechano-sensitivity in the aldosterone-sensitive distal nephron. PLoS One 6:e22824PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Zaika O, Mamenko M, Berrout J, Boukelmoune N, O’Neil RG, Pochynyuk O (2013) TRPV4 dysfunction promotes renal cystogenesis in autosomal recessive polycystic kidney disease. J Am Soc Nephrol 24:604–616PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X et al (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137PubMedCrossRefGoogle Scholar
  135. 135.
    Praetorius HA, Spring KR (2003) Removal of the MDCK cell primary cilium abolishes flow sensing. J Membr Biol 191:69–76PubMedCrossRefGoogle Scholar
  136. 136.
    Praetorius HA, Spring KR (2005) A physiological view of the primary cilium. Annu Rev Physiol 67:515–529PubMedCrossRefGoogle Scholar
  137. 137.
    Rice WL, Van Hoek AN, Paunescu TG, Huynh C, Goetze B, Singh B et al (2013) High resolution helium ion scanning microscopy of the rat kidney. PLoS One 8:e57051PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Mamenko M, Zaika O, O’Neil RG, Pochynyuk O (2013) Ca2+ Imaging as a tool to assess TRP channel function in murine distal nephrons. Methods Mol Biol 998:371–384PubMedCrossRefGoogle Scholar
  139. 139.
    Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Rossetti S, Consugar MB, Chapman AB, Torres VE, Guay-Woodford LM, Grantham JJ et al (2007) Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 18:2143–2160PubMedCrossRefGoogle Scholar
  141. 141.
    Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X et al (2002) The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 30:259–269PubMedCrossRefGoogle Scholar
  142. 142.
    Torres VE, Wang X, Qian Q, Somlo S, Harris PC, Gattone VH 2nd (2004) Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med 10:363–364PubMedCrossRefGoogle Scholar
  143. 143.
    Verani RR, Silva FG (1988) Histogenesis of the renal cysts in adult (autosomal dominant) polycystic kidney disease: a histochemical study. Mod Pathol 1:457–463PubMedGoogle Scholar
  144. 144.
    Verani R, Walker P, Silva FG (1989) Renal cystic disease of infancy: results of histochemical studies. A report of the southwest pediatric nephrology study group. Pediatr Nephrol 3:37–42PubMedCrossRefGoogle Scholar
  145. 145.
    Zerres K, Rudnik-Schoneborn S, Steinkamm C, Becker J, Mucher G (1998) Autosomal recessive polycystic kidney disease. J Mol Med 76:303–309PubMedCrossRefGoogle Scholar
  146. 146.
    Gallagher AR, Germino GG, Somlo S (2010) Molecular advances in autosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis 17:118–130PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Nauli SM, Rossetti S, Kolb RJ, Alenghat FJ, Consugar MB, Harris PC et al (2006) Loss of polycystin-1 in human cyst-lining epithelia leads to ciliary dysfunction. J Am Soc Nephrol 17:1015–1025PubMedCrossRefGoogle Scholar
  148. 148.
    Yamaguchi T, Hempson SJ, Reif GA, Hedge AM, Wallace DP (2006) Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. J Am Soc Nephrol 17:178–187PubMedCrossRefGoogle Scholar
  149. 149.
    Yang J, Zhang S, Zhou Q, Guo H, Zhang K, Zheng R et al (2007) PKHD1 gene silencing may cause cell abnormal proliferation through modulation of intracellular calcium in autosomal recessive polycystic kidney disease. J Biochem Mol Biol 40:467–474PubMedCrossRefGoogle Scholar
  150. 150.
    Xu C, Shmukler BE, Nishimura K, Kaczmarek E, Rossetti S, Harris PC et al (2009) Attenuated, flow-induced ATP release contributes to absence of flow-sensitive, purinergic Ca2+ signaling in human ADPKD cyst epithelial cells. Am J Physiol Ren Physiol 296:F1464–F1476CrossRefGoogle Scholar
  151. 151.
    Hovater MB, Olteanu D, Welty EA, Schwiebert EM (2008) Purinergic signaling in the lumen of a normal nephron and in remodeled PKD encapsulated cysts. Purinergic Signal 4:109–124PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Hovater MB, Olteanu D, Hanson EL, Cheng NL, Siroky B, Fintha A et al (2008) Loss of apical monocilia on collecting duct principal cells impairs ATP secretion across the apical cell surface and ATP-dependent and flow-induced calcium signals. Purinergic Signal 4:155–170PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Siroky BJ, Ferguson WB, Fuson AL, Xie Y, Fintha A, Komlosi P et al (2006) Loss of primary cilia results in deregulated and unabated apical calcium entry in ARPKD collecting duct cells. Am J Physiol Ren Physiol 290:F1320–F1328CrossRefGoogle Scholar
  154. 154.
    Stewart AP, Smith GD, Sandford RN, Edwardson JM (2010) Atomic force microscopy reveals the alternating subunit arrangement of the TRPP2-TRPV4 heterotetramer. Biophys J 99:790–797PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Kottgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X, Doerken M et al (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182:437–447PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Du J, Wong WY, Sun L, Huang Y, Yao X (2012) Protein kinase G inhibits flow-induced Ca2+ entry into collecting duct cells. J Am Soc Nephrol 23: 1172–1180Google Scholar
  157. 157.
    Masyuk TV, Huang BQ, Ward CJ, Masyuk AI, Yuan D, Splinter PL et al (2003) Defects in cholangiocyte fibrocystin expression and ciliary structure in the PCK rat. Gastroenterology 125:1303–1310PubMedCrossRefGoogle Scholar
  158. 158.
    Ward CJ, Yuan D, Masyuk TV, Wang X, Punyashthiti R, Whelan S et al (2003) Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet 12:2703–2710PubMedCrossRefGoogle Scholar
  159. 159.
    Wang S, Zhang J, Nauli SM, Li X, Starremans PG, Luo Y et al (2007) Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia. Mol Cell Biol 27:3241–3252PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Yu Y, Ulbrich MH, Li MH, Buraei Z, Chen XZ, Ong AC et al (2009) Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci USA 106:11558–11563PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4−/− mice. Proc Natl Acad Sci USA 100:13698–13703PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Woda CB, Bragin A, Kleyman TR, Satlin LM (2001) Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol Renal Physiol 280:F786–F793PubMedGoogle Scholar
  163. 163.
    Kaufman JS, Hamburger RJ (1996) Potassium transport in the connecting tubule. Miner Electrolyte Metab 22:242–247PubMedGoogle Scholar
  164. 164.
    Taniguchi J, Imai M (1998) Flow-dependent activation of maxi K+ channels in apical membrane of rabbit connecting tubule. J Membr Biol 164:35–45PubMedCrossRefGoogle Scholar
  165. 165.
    Taniguchi J, Tsuruoka S, Mizuno A, Sato J, Fujimura A, Suzuki M (2007) TRPV4 as a flow sensor in flow-dependent K+ secretion from the cortical collecting duct. Am J Physiol Renal Physiol 292:F667–F673PubMedCrossRefGoogle Scholar
  166. 166.
    Liu W, Morimoto T, Woda C, Kleyman TR, Satlin LM (2007) Ca2+ dependence of flow-stimulated K secretion in the mammalian cortical collecting duct. Am J Physiol Ren Physiol 293:F227–F235CrossRefGoogle Scholar
  167. 167.
    Wu L, Gao X, Brown RC, Heller S, O’Neil RG (2007) Dual role of the TRPV4 channel as a sensor of flow and osmolality in renal epithelial cells. Am J Physiol Renal Physiol 293:F1699–F1713PubMedCrossRefGoogle Scholar
  168. 168.
    Jin M, Berrout J, Chen L, O’Neil RG (2011) Hypotonicity-induced TRPV4 function in renal collecting duct cells: modulation by progressive cross-talk with Ca2+-activated K+ channels. Cell Calcium 51:131–139PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Berrout J, Mamenko M, Zaika OL, Chen L, Zang W, Pochynyuk O et al (2014) Emerging role of the calcium-activated, small conductance, SK3 K+ channel in distal tubule function: regulation by TRPV4. PLoS One 9:e95149PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Xia XM, Fakler B, Rivard A, Wayman G, Johnson-Pais T, Keen JE et al (1998) Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395:503–507PubMedCrossRefGoogle Scholar
  171. 171.
    Xia XM, Zeng X, Lingle CJ (2002) Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418:880–884PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Viktor Tomilin
    • 1
    • 2
  • Mykola Mamenko
    • 1
  • Oleg Zaika
    • 1
  • Oleh Pochynyuk
    • 1
    Email author
  1. 1.Department of Integrative Biology and PharmacologyThe University of Texas Health Science Center at HoustonHoustonUSA
  2. 2.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussian Federation

Personalised recommendations