Advertisement

Seminars in Immunopathology

, Volume 37, Issue 3, pp 221–231 | Cite as

Pathogenic CD8+ T cells in experimental cerebral malaria

  • Shanshan Wu Howland
  • Carla Claser
  • Chek Meng Poh
  • Sin Yee Gun
  • Laurent RéniaEmail author
Review

Abstract

Cerebral malaria (CM) is one the major complications occurring during malaria infection. The mechanisms leading to this syndrome are still not completely understood. Although it is clear that parasite sequestration is the key initiation factor, the downstream pathological processes are still highly debated. The experimental cerebral malaria (ECM) model, in which susceptible mice are infected with Plasmodium berghei ANKA, has led to the identification of CD8+ T cells as the major mediator of ECM death. In this review, we discuss the recent advances and future developments in the understanding of the role of CD8+ T cells in CM.

Keywords

Malaria CD8+ T cells Brain Pathology 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM (2014) Malaria. Lancet 383(9918):723–735. doi: 10.1016/S0140-6736(13)60024-0 PubMedCrossRefGoogle Scholar
  2. 2.
    Smith JD (2014) The role of PfEMP1 adhesion domain classification in Plasmodium falciparum pathogenesis research. Mol Biochem Parasitol 195(2):82–87. doi: 10.1016/j.molbiopara.2014.07.006 PubMedCrossRefGoogle Scholar
  3. 3.
    MacPherson GG, Warrell MJ, White NJ, Looareesuwan S, Warrell DA (1985) Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol 119(3):385–401PubMedCentralPubMedGoogle Scholar
  4. 4.
    Lavstsen T, Turner L, Saguti F, Magistrado P, Rask TS, Jespersen JS, Wang CW, Berger SS, Baraka V, Marquard AM, Seguin-Orlando A, Willerslev E, Gilbert MT, Lusingu J, Theander TG (2012) Plasmodium falciparum erythrocyte membrane protein 1 domain cassettes 8 and 13 are associated with severe malaria in children. Proc Natl Acad Sci U S A 109(26):E1791–1800. doi: 10.1073/pnas.1120455109 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Avril M, Tripathi AK, Brazier AJ, Andisi C, Janes JH, Soma VL, Sullivan DJ Jr, Bull PC, Stins MF, Smith JD (2012) A restricted subset of var genes mediates adherence of Plasmodium falciparum-infected erythrocytes to brain endothelial cells. Proc Natl Acad Sci U S A 109(26):E1782–1790. doi: 10.1073/pnas.1120534109 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Claessens A, Adams Y, Ghumra A, Lindergard G, Buchan CC, Andisi C, Bull PC, Mok S, Gupta AP, Wang CW, Turner L, Arman M, Raza A, Bozdech Z, Rowe JA (2012) A subset of group a-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells. Proc Natl Acad Sci U S A 109(26):E1772–1781. doi: 10.1073/pnas.1120461109 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Turner L, Lavstsen T, Berger SS, Wang CW, Petersen JE, Avril M, Brazier AJ, Freeth J, Jespersen JS, Nielsen MA, Magistrado P, Lusingu J, Smith JD, Higgins MK, Theander TG (2013) Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498(7455):502–505. doi: 10.1038/nature12216 PubMedCrossRefGoogle Scholar
  8. 8.
    Engwerda C, Belnoue E, Gruner AC, Renia L (2005) Experimental models of cerebral malaria. Curr Top Microbiol Immunol 297:103–143PubMedGoogle Scholar
  9. 9.
    Renia L, Potter SM, Mauduit M, Rosa DS, Kayibanda M, Deschemin JC, Snounou G, Gruner AC (2006) Pathogenic T cells in cerebral malaria. Int J Parasitol 36(5):547–554. doi: 10.1016/j.ijpara.2006.02.007 PubMedCrossRefGoogle Scholar
  10. 10.
    Bagot S, Nogueira F, Collette A, do Rosario V, Lemonier F, Cazenave PA, Pied S (2004) Comparative study of brain CD8+ T cells induced by sporozoites and those induced by blood-stage Plasmodium berghei ANKA involved in the development of cerebral malaria. Infect Immun 72(5):2817–2826. doi: 10.1128/iai. 72.5.2817-2826.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Belnoue E, Kayibanda M, Vigario AM, Deschemin JC, van Rooijen N, Viguier M, Snounou G, Renia L (2002) On the pathogenic role of brain-sequestered alphabeta CD8+ T cells in experimental cerebral malaria. J Immunol 169(11):6369–6375PubMedCrossRefGoogle Scholar
  12. 12.
    Lundie RJ, de Koning-Ward TF, Davey GM, Nie CQ, Hansen DS, Lau LS, Mintern JD, Belz GT, Schofield L, Carbone FR, Villadangos JA, Crabb BS, Heath WR (2008) Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8alpha+ dendritic cells. Proc Natl Acad Sci U S A 105(38):14509–14514. doi: 10.1073/pnas.0806727105 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Miyakoda M, Kimura D, Yuda M, Chinzei Y, Shibata Y, Honma K, Yui K (2008) Malaria-specific and nonspecific activation of CD8+ T cells during blood stage of Plasmodium berghei infection. J Immunol 181(2):1420–1428PubMedCrossRefGoogle Scholar
  14. 14.
    Lau LS, Fernandez Ruiz D, Davey GM, de Koning-Ward TF, Papenfuss AT, Carbone FR, Brooks AG, Crabb BS, Heath WR (2011) Blood-stage Plasmodium berghei infection generates a potent, specific CD8+ T-cell response despite residence largely in cells lacking MHC I processing machinery. J Infect Dis 204(12):1989–1996. doi: 10.1093/infdis/jir656 PubMedCrossRefGoogle Scholar
  15. 15.
    Lau LS, Fernandez-Ruiz D, Mollard V, Sturm A, Neller MA, Cozijnsen A, Gregory JL, Davey GM, Jones CM, Lin YH, Haque A, Engwerda CR, Nie CQ, Hansen DS, Murphy KM, Papenfuss AT, Miles JJ, Burrows SR, de Koning-Ward T, McFadden GI, Carbone FR, Crabb BS, Heath WR (2014) CD8+ T cells from a novel T cell receptor transgenic mouse induce liver-stage immunity that can be boosted by blood-stage infection in rodent malaria. PLoS Pathog 10(5):e1004135. doi: 10.1371/journal.ppat.1004135 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Howland SW, Poh CM, Gun SY, Claser C, Malleret B, Shastri N, Ginhoux F, Grotenbreg GM, Renia L (2013) Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria. EMBO Mol Med 5(7):916–931. doi: 10.1002/emmm.201202273 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Poh CM, Howland SW, Grotenbreg GM, Renia L (2014) Damage to the blood–brain barrier during experimental cerebral malaria results from synergistic effects of CD8+ T cells with different specificities. Infect Immun 82(11):4854–4864. doi: 10.1128/IAI. 02180-14 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Lin JW, Shaw TN, Annoura T, Fougere A, Bouchier P, Chevalley-Maurel S, Kroeze H, Franke-Fayard B, Janse CJ, Couper KN, Khan SM (2014) The subcellular location of ovalbumin in Plasmodium berghei blood stages influences the magnitude of T-cell responses. Infect Immun 82(11):4654–4665. doi: 10.1128/IAI. 01940-14 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Haque A, Best SE, Unosson K, Amante FH, De LF, Anstey NM, Karupiah G, Smyth MJ, Heath WR, Engwerda CR (2011) Granzyme B expression by CD8+ T cells is required for the development of experimental cerebral malaria. J Immunol 186(11):6148–6156PubMedCrossRefGoogle Scholar
  20. 20.
    Nitcheu J, Bonduelle O, Combadiere C, Tefit M, Seilhean D, Mazier D, Combadiere B (2003) Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. J Immunol 170(4):2221–2228PubMedCrossRefGoogle Scholar
  21. 21.
    Engwerda CR, Beattie L, Amante FH (2005) The importance of the spleen in malaria. Trends Parasitol 21(2):75–80. doi: 10.1016/j.pt.2004.11.008 PubMedCrossRefGoogle Scholar
  22. 22.
    Kumar S, Good MF, Dontfraid F, Vinetz JM, Miller LH (1989) Interdependence of CD4+ T cells and malarial spleen in immunity to Plasmodium vinckei vinckei. Relevance to vaccine development. J Immunol 143(6):2017–2023PubMedGoogle Scholar
  23. 23.
    Yap GS, Stevenson MM (1994) Differential requirements for an intact spleen in induction and expression of B-cell-dependent immunity to Plasmodium chabaudi AS. Infect Immun 62(10):4219–4225PubMedCentralPubMedGoogle Scholar
  24. 24.
    Sayles PC, Yanez DM, Wassom DL (1993) Plasmodium yoelii: splenectomy alters the antibody responses of infected mice. Exp Parasitol 76(4):377–384. doi: 10.1006/expr.1993.1046 PubMedCrossRefGoogle Scholar
  25. 25.
    Amante FH, Haque A, Stanley AC, Rivera Fde L, Randall LM, Wilson YA, Yeo G, Pieper C, Crabb BS, de Koning-Ward TF, Lundie RJ, Good MF, Pinzon-Charry A, Pearson MS, Duke MG, McManus DP, Loukas A, Hill GR, Engwerda CR (2010) Immune-mediated mechanisms of parasite tissue sequestration during experimental cerebral malaria. J Immunol 185(6):3632–3642. doi: 10.4049/jimmunol.1000944 PubMedCrossRefGoogle Scholar
  26. 26.
    Tamura T, Kimura K, Yuda M, Yui K (2011) Prevention of experimental cerebral malaria by Flt3 ligand during infection with Plasmodium berghei ANKA. Infect Immun 79(10):3947–3956. doi: 10.1128/IAI. 01337-10 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Guermonprez P, Helft J, Claser C, Deroubaix S, Karanje H, Gazumyan A, Darasse-Jeze G, Telerman SB, Breton G, Schreiber HA, Frias-Staheli N, Billerbeck E, Dorner M, Rice CM, Ploss A, Klein F, Swiecki M, Colonna M, Kamphorst AO, Meredith M, Niec R, Takacs C, Mikhail F, Hari A, Bosque D, Eisenreich T, Merad M, Shi Y, Ginhoux F, Renia L, Urban BC, Nussenzweig MC (2013) Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection. Nat Med 19(6):730–738. doi: 10.1038/nm.3197 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Voisine C, Mastelic B, Sponaas AM, Langhorne J (2010) Classical CD11c+ dendritic cells, not plasmacytoid dendritic cells, induce T cell responses to Plasmodium chabaudi malaria. Int J Parasitol 40(6):711–719. doi: 10.1016/j.ijpara.2009.11.005 PubMedCrossRefGoogle Scholar
  29. 29.
    Wykes MN, Kay JG, Manderson A, Liu XQ, Brown DL, Richard DJ, Wipasa J, Jiang SH, Jones MK, Janse CJ, Waters AP, Pierce SK, Miller LH, Stow JL, Good MF (2011) Rodent blood-stage Plasmodium survive in dendritic cells that infect naive mice. Proc Natl Acad Sci U S A 108(27):11205–11210. doi: 10.1073/pnas.1108579108 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    deWalick S, Amante FH, McSweeney KA, Randall LM, Stanley AC, Haque A, Kuns RD, MacDonald KP, Hill GR, Engwerda CR (2007) Cutting edge: conventional dendritic cells are the critical APC required for the induction of experimental cerebral malaria. J Immunol 178(10):6033–6037PubMedCrossRefGoogle Scholar
  31. 31.
    Lundie RJ, Young LJ, Davey GM, Villadangos JA, Carbone FR, Heath WR, Crabb BS (2010) Blood-stage Plasmodium berghei infection leads to short-lived parasite-associated antigen presentation by dendritic cells. Eur J Immunol 40(6):1674–1681. doi: 10.1002/eji.200939265 PubMedCrossRefGoogle Scholar
  32. 32.
    Piva L, Tetlak P, Claser C, Karjalainen K, Renia L, Ruedl C (2012) Cutting edge: Clec9A+ dendritic cells mediate the development of experimental cerebral malaria. J Immunol 189(3):1128–1132. doi: 10.4049/jimmunol.1201171 PubMedCrossRefGoogle Scholar
  33. 33.
    Hanum PS, Hayano M, Kojima S (2003) Cytokine and chemokine responses in a cerebral malaria-susceptible or -resistant strain of mice to Plasmodium berghei ANKA infection: early chemokine expression in the brain. Int Immunol 15(5):633–640. doi: 10.1093/intimm/dxg065 CrossRefGoogle Scholar
  34. 34.
    Hansen DS, Evans KJ, D’Ombrain MC, Bernard NJ, Sexton AC, Buckingham L, Scalzo AA, Schofield L (2005) The natural killer complex regulates severe malarial pathogenesis and influences acquired immune responses to Plasmodium berghei ANKA. Infect Immun 73(4):2288–2297PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Lovegrove FE, Pena-Castillo L, Mohammad N, Liles WC, Hughes TR, Kain KC (2006) Simultaneous host and parasite expression profiling identifies tissue-specific transcriptional programs associated with susceptibility or resistance to experimental cerebral malaria. BMC Genomics 7:295PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Lovegrove FE, Gharib SA, Patel SN, Hawkes CA, Kain KC, Liles WC (2007) Expression microarray analysis implicates apoptosis and interferon-responsive mechanisms in susceptibility to experimental cerebral malaria. Am J Pathol 171(6):1894–1903. doi: 10.2353/ajpath.2007.070630 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Delahaye N, Coltel N, Puthier D, Barbier M, Benech P, Joly F, Iraqi F, Grau G, Nguyen C, Rihet P (2007) Gene expression analysis reveals early changes in several molecular pathways in cerebral malaria-susceptible mice versus cerebral malaria-resistant mice. BMC Genomics 8(1):1–16. doi: 10.1186/1471-2164-8-452 CrossRefGoogle Scholar
  38. 38.
    Miu J, Mitchell AJ, Muller M, Carter SL, Manders PM, McQuillan JA, Saunders BM, Ball HJ, Lu B, Campbell IL, Hunt NH (2008) Chemokine gene expression during fatal murine cerebral malaria and protection due to CXCR3 deficiency. J Immunol 180(2):1217–1230PubMedCrossRefGoogle Scholar
  39. 39.
    Miu J, Hunt NH, Ball HJ (2008) Predominance of interferon-related responses in the brain during murine malaria, as identified by microarray analysis. Infect Immun 76(5):1812–1824PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Oakley MS, McCutchan TF, Anantharaman V, Ward JM, Faucette L, Erexson C, Mahajan B, Zheng H, Majam V, Aravind L, Kumar S (2008) Host biomarkers and biological pathways that are associated with the expression of experimental cerebral malaria in mice. Infect Immun 76(10):4518–4529PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Belnoue E, Kayibanda M, Deschemin JC, Viguier M, Mack M, Kuziel WA, Renia L (2003) CCR5 deficiency decreases susceptibility to experimental cerebral malaria. Blood 101(11):4253–4259PubMedCrossRefGoogle Scholar
  42. 42.
    Belnoue E, Costa FT, Vigario AM, Voza T, Gonnet F, Landau I, Van Rooijen N, Mack M, Kuziel WA, Renia L (2003) Chemokine receptor CCR2 is not essential for the development of experimental cerebral malaria. Infect Immun 71(6):3648–3651PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Hansen DS, Bernard NJ, Nie CQ, Schofield L (2007) NK cells stimulate recruitment of CXCR3+ T cells to the brain during Plasmodium berghei-mediated cerebral malaria. J Immunol 178(9):5779–5788PubMedCrossRefGoogle Scholar
  44. 44.
    Campanella GS, Tager AM, El Khoury JK, Thomas SY, Abrazinski TA, Manice LA, Colvin RA, Luster AD (2008) Chemokine receptor CXCR3 and its ligands CXCL9 and CXCL10 are required for the development of murine cerebral malaria. Proc Natl Acad Sci U S A 105(12):4814–4819PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Van den Steen PE, Deroost K, Van Aelst I, Geurts N, Martens E, Struyf S, Nie CQ, Hansen DS, Matthys P, Van Damme J, Opdenakker G (2008) CXCR3 determines strain susceptibility to murine cerebral malaria by mediating T lymphocyte migration toward IFN-gamma-induced chemokines. Eur J Immunol 38(4):1082–1095PubMedCrossRefGoogle Scholar
  46. 46.
    Nie CQ, Bernard NJ, Norman MU, Amante FH, Lundie RJ, Crabb BS, Heath WR, Engwerda CR, Hickey MJ, Schofield L, Hansen DS (2009) IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection. PLoS Pathog 5(4):e1000369. doi: 10.1371/journal.ppat.1000369 PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Wilson NO, Solomon W, Anderson L, Patrickson J, Pitts S, Bond V, Liu M, Stiles JK (2013) Pharmacologic inhibition of CXCL10 in combination with anti-malarial therapy eliminates mortality associated with murine model of cerebral malaria. PLoS One 8(4):e60898. doi: 10.1371/journal.pone.0060898 PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Srivastava K, Cockburn IA, Swaim A, Thompson LE, Tripathi A, Fletcher CA, Shirk EM, Sun H, Kowalska MA, Fox-Talbot K, Sullivan D, Zavala F, Morrell CN (2008) Platelet factor 4 mediates inflammation in experimental cerebral malaria. Cell Host Microbe 4(2):179–187. doi: 10.1016/j.chom.2008.07.003 PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Yanez DM, Manning DD, Cooley AJ, Weidanz WP, van der Heyde HC (1996) Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. J Immunol 157(4):1620–1624PubMedGoogle Scholar
  50. 50.
    Amani V, Vigário AM, Belnoue E, Marussig M, Fonseca L, Mazier D, Rénia L (2000) Involvement of IFN-γ receptor-mediated signaling in pathology and anti-malarial immunity induced by Plasmodium berghei infection. Eur J Immunol 30(6):1646–1655. doi: 10.1002/1521-4141(200006)30:6<1646::aid-immu1646>3.0.co;2-0 PubMedCrossRefGoogle Scholar
  51. 51.
    Belnoue E, Potter SM, Rosa DS, Mauduit M, Gruner AC, Kayibanda M, Mitchell AJ, Hunt NH, Renia L (2008) Control of pathogenic CD8+ T cell migration to the brain by IFN-gamma during experimental cerebral malaria. Parasite Immunol 30(10):544–553. doi: 10.1111/j.1365-3024.2008.01053.x PubMedCrossRefGoogle Scholar
  52. 52.
    Hunt NH, Ball HJ, Hansen AM, Khaw LT, Guo J, Bakmiwewa S, Mitchell AJ, Combes V, Grau GE (2014) Cerebral malaria: gamma-interferon redux. Front Cell Infect Microbiol 4:113. doi: 10.3389/fcimb.2014.00113 PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Villegas-Mendez A, Greig R, Shaw TN, de Souza JB, Gwyer Findlay E, Stumhofer JS, Hafalla JC, Blount DG, Hunter CA, Riley EM, Couper KN (2012) IFN-gamma-producing CD4+ T cells promote experimental cerebral malaria by modulating CD8+ T cell accumulation within the brain. J Immunol 189(2):968–979PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Hansen DS, Ryg-Cornejo V, Ioannidis LJ, Chiu CY, Ly A, Nie CQ, Scalzo AA, Schofield L (2014) The contribution of natural killer complex loci to the development of experimental cerebral malaria. PLoS One 9(4):e93268. doi: 10.1371/journal.pone.0093268 PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Renia L, Howland SW, Claser C, Charlotte Gruner A, Suwanarusk R, Hui Teo T, Russell B, Ng LF (2012) Cerebral malaria: mysteries at the blood–brain barrier. Virulence 3(2):193–201. doi: 10.4161/viru.19013 PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Pino P, Taoufiq Z, Nitcheu J, Vouldoukis I, Mazier D (2005) Blood–brain barrier breakdown during cerebral malaria: suicide or murder? Thromb Haemost 94(2):336–340. doi: 10.1267/THRO05020336 PubMedGoogle Scholar
  57. 57.
    Mai J, Virtue A, Shen J, Wang H, Yang XF (2013) An evolving new paradigm: endothelial cells–conditional innate immune cells. J Hematol Oncol 6:61. doi: 10.1186/1756-8722-6-61 PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    El-Assaad F, Wheway J, Mitchell AJ, Lou J, Hunt NH, Combes V, Grau GE (2013) Cytoadherence of Plasmodium berghei-infected red blood cells to murine brain and lung microvascular endothelial cells in vitro. Infect Immun 81(11):3984–3991. doi: 10.1128/IAI. 00428-13 PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Baptista FG, Pamplona A, Pena AC, Mota MM, Pied S, Vigario AM (2010) Accumulation of Plasmodium berghei-infected red blood cells in the brain is crucial for the development of cerebral malaria in mice. Infect Immun 78(9):4033–4039PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Walther M, Tongren JE, Andrews L, Korbel D, King E, Fletcher H, Andersen RF, Bejon P, Thompson F, Dunachie SJ, Edele F, de Souza JB, Sinden RE, Gilbert SC, Riley EM, Hill AV (2005) Upregulation of TGF-beta, FOXP3, and CD4+ CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection. Immunity 23(3):287–296. doi: 10.1016/j.immuni.2005.08.006 PubMedCrossRefGoogle Scholar
  61. 61.
    Jangpatarapongsa K, Chootong P, Sattabongkot J, Chotivanich K, Sirichaisinthop J, Tungpradabkul S, Hisaeda H, Troye-Blomberg M, Cui L, Udomsangpetch R (2008) Plasmodium vivax parasites alter the balance of myeloid and plasmacytoid dendritic cells and the induction of regulatory T cells. Eur J Immunol 38(10):2697–2705. doi: 10.1002/eji.200838186 PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Tetsutani K, Ishiwata K, Ishida H, Tu L, Torii M, Hamano S, Himeno K, Hisaeda H (2009) Concurrent infection with heligmosomoides polygyrus suppresses anti-Plasmodium yoelii protection partially by induction of CD4(+)CD25(+)Foxp3(+) treg in mice. Eur J Immunol 39(10):2822–2830. doi: 10.1002/eji.200939433 PubMedCrossRefGoogle Scholar
  63. 63.
    Vigario AM, Gorgette O, Dujardin HC, Cruz T, Cazenave PA, Six A, Bandeira A, Pied S (2007) Regulatory CD4+CD25+Foxp3+ T cells expand during experimental Plasmodium infection but do not prevent cerebral malaria. Int J Parasitol 37(8–9):963–973. doi: 10.1016/j.ijpara.2007.01.004 PubMedCrossRefGoogle Scholar
  64. 64.
    Cambos M, Belanger B, Jacques A, Roulet A, Scorza T (2008) Natural regulatory (CD4+CD25+FOXP+) T cells control the production of pro-inflammatory cytokines during Plasmodium chabaudi adami infection and do not contribute to immune evasion. Int J Parasitol 38(2):229–238. doi: 10.1016/j.ijpara.2007.07.006 PubMedCrossRefGoogle Scholar
  65. 65.
    Amante FH, Stanley AC, Randall LM, Zhou Y, Haque A, McSweeney K, Waters AP, Janse CJ, Good MF, Hill GR, Engwerda CR (2007) A role for natural regulatory T cells in the pathogenesis of experimental cerebral malaria. Am J Pathol 171(2):548–559. doi: 10.2353/ajpath.2007.061033 PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Steeg C, Adler G, Sparwasser T, Fleischer B, Jacobs T (2009) Limited role of CD4+ Foxp3+ regulatory T cells in the control of experimental cerebral malaria. J Immunol 183(11):7014–7022. doi: 10.4049/jimmunol.0901422 PubMedCrossRefGoogle Scholar
  67. 67.
    Haque A, Best SE, Amante FH, Mustafah S, Desbarrieres L, de Labastida F, Sparwasser T, Hill GR, Engwerda CR (2010) CD4+ natural regulatory T cells prevent experimental cerebral malaria via CTLA-4 when expanded in vivo. PLoS Pathog 6(12):e1001221. doi: 10.1371/journal.ppat.1001221 PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Hafalla JC, Claser C, Couper KN, Grau GE, Renia L, de Souza JB, Riley EM (2012) The CTLA-4 and PD-1/PD-L1 inhibitory pathways independently regulate host resistance to Plasmodium-induced acute immune pathology. PLoS Pathog 8(2):e1002504. doi: 10.1371/journal.ppat.1002504 PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Jacobs T, Graefe SE, Niknafs S, Gaworski I, Fleischer B (2002) Murine malaria is exacerbated by CTLA-4 blockade. J Immunol 169(5):2323–2329PubMedCrossRefGoogle Scholar
  70. 70.
    Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK, Hurchla MA, Zimmerman N, Sim J, Zang X, Murphy TL, Russell JH, Allison JP, Murphy KM (2003) BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 4(7):670–679. doi: 10.1038/ni944 PubMedCrossRefGoogle Scholar
  71. 71.
    Lepenies B, Pfeffer K, Hurchla MA, Murphy TL, Murphy KM, Oetzel J, Fleischer B, Jacobs T (2007) Ligation of B and T lymphocyte attenuator prevents the genesis of experimental cerebral malaria. J Immunol 179(6):4093–4100PubMedCrossRefGoogle Scholar
  72. 72.
    Kossodo S, Monso C, Juillard P, Velu T, Goldman M, Grau GE (1997) Interleukin-10 modulates susceptibility in experimental cerebral malaria. Immunology 91(4):536–540PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Liu Y, Chen Y, Li Z, Han Y, Sun Y, Wang Q, Liu B, Su Z (2013) Role of IL-10-producing regulatory B cells in control of cerebral malaria in Plasmodium berghei infected mice. Eur J Immunol 43(11):2907–2918. doi: 10.1002/eji.201343512 PubMedCrossRefGoogle Scholar
  74. 74.
    Niikura M, Inoue S, Kobayashi F (2011) Role of interleukin-10 in malaria: focusing on coinfection with lethal and nonlethal murine malaria parasites. J Biomed Biotechnol 2011:383962. doi: 10.1155/2011/383962 PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Eckwalanga M, Marussig M, Tavares MD, Bouanga JC, Hulier E, Pavlovitch JH, Minoprio P, Portnoi D, Renia L, Mazier D (1994) Murine AIDS protects mice against experimental cerebral malaria: down-regulation by interleukin 10 of a T-helper type 1 CD4+ cell-mediated pathology. Proc Natl Acad Sci U S A 91(17):8097–8101PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Craig AG, Grau GE, Janse C, Kazura JW, Milner D, Barnwell JW, Turner G, Langhorne J, Participants of the Hinxton Retreat meeting on Animal Models for Research on Severe M (2012) The role of animal models for research on severe malaria. PLoS Pathog 8(2):e1002401. doi: 10.1371/journal.ppat.1002401 PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Claser C, Malleret B, Gun SY, Wong AY, Chang ZW, Teo P, See PC, Howland SW, Ginhoux F, Renia L (2011) CD8+ T cells and IFN-gamma mediate the time-dependent accumulation of infected red blood cells in deep organs during experimental cerebral malaria. PLoS One 6(4):e18720. doi: 10.1371/journal.pone.0018720 PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Dorovini-Zis K, Schmidt K, Huynh H, Fu W, Whitten RO, Milner D, Kamiza S, Molyneux M, Taylor TE (2011) The neuropathology of fatal cerebral malaria in Malawian children. Am J Pathol 178(5):2146–2158. doi: 10.1016/j.ajpath.2011.01.016 PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Armah HB, Wilson NO, Sarfo BY, Powell MD, Bond VC, Anderson W, Adjei AA, Gyasi RK, Tettey Y, Wiredu EK, Tongren JE, Udhayakumar V, Stiles JK (2007) Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children. Malar J 6:147. doi: 10.1186/1475-2875-6-147 PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Jain V, Armah HB, Tongren JE, Ned RM, Wilson NO, Crawford S, Joel PK, Singh MP, Nagpal AC, Dash AP, Udhayakumar V, Singh N, Stiles JK (2008) Plasma IP-10, apoptotic and angiogenic factors associated with fatal cerebral malaria in India. Malar J 7:83. doi: 10.1186/1475-2875-7-83 PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Wilson NO, Jain V, Roberts CE, Lucchi N, Joel PK, Singh MP, Nagpal AC, Dash AP, Udhayakumar V, Singh N, Stiles JK (2011) CXCL4 and CXCL10 predict risk of fatal cerebral malaria. Dis Markers 30(1):39–49. doi: 10.3233/DMA-2011-0763 PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Wilson N, Driss A, Solomon W, Dickinson-Copeland C, Salifu H, Jain V, Singh N, Stiles J (2013) CXCL10 gene promoter polymorphism -1447A>G correlates with plasma CXCL10 levels and is associated with male susceptibility to cerebral malaria. PLoS One 8(12):e81329. doi: 10.1371/journal.pone.0081329 PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Groom JR, Luster AD (2011) CXCR3 in T cell function. Exp Cell Res 317(5):620–631. doi: 10.1016/j.yexcr.2010.12.017 PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Lasagni L, Francalanci M, Annunziato F, Lazzeri E, Giannini S, Cosmi L, Sagrinati C, Mazzinghi B, Orlando C, Maggi E, Marra F, Romagnani S, Serio M, Romagnani P (2003) An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197(11):1537–1549. doi: 10.1084/jem.20021897 PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Jambou R, Combes V, Jambou MJ, Weksler BB, Couraud PO, Grau GE (2010) Plasmodium falciparum adhesion on human brain microvascular endothelial cells involves transmigration-like cup formation and induces opening of intercellular junctions. PLoS Pathog 6(7):e1001021. doi: 10.1371/journal.ppat.1001021 PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Khaw LT, Ball HJ, Golenser J, Combes V, Grau GE, Wheway J, Mitchell AJ, Hunt NH (2013) Endothelial cells potentiate interferon-gamma production in a novel tripartite culture model of human cerebral malaria. PLoS One 8(7):e69521. doi: 10.1371/journal.pone.0069521 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Shanshan Wu Howland
    • 1
  • Carla Claser
    • 1
  • Chek Meng Poh
    • 1
    • 2
  • Sin Yee Gun
    • 1
    • 2
  • Laurent Rénia
    • 1
    • 2
    Email author
  1. 1.Singapore Immunology NetworkAgency for Science, Technology and Research (A*STAR)SingaporeSingapore
  2. 2.Department of Microbiology, Life Sciences Institute, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore

Personalised recommendations