Seminars in Immunopathology

, Volume 37, Issue 2, pp 123–130 | Cite as

Candida albicans phospholipomannan: a sweet spot for controlling host response/inflammation

  • Chantal Fradin
  • Emerson Soares Bernardes
  • Thierry JouaultEmail author


Fungal cell walls contain several types of glycans, which play important roles in the pathogenesis of fungal infection and host immune response. Among them, glycosphingolipids have attracted much attention lately since they contribute actively to the fungi development and fungal-induced pathogenesis. Although glycosphingolipids are present in pathogenic and non-pathogenic fungi, pathogenic strains exhibit distinct glycan structures on their sphingolipids, which contribute to the regulatory processes engaged in inflammatory response. In Candida albicans, phospholipomannan (PLM) represents a prototype of these sphingolipids. Through its glycan and lipid moieties, PLM induces activation of host signaling pathways involved in the initial recognition of fungi, causing immune system disorder and persistent fungal disease. In this review, first we describe the general aspects of C. albicans sphingolipids synthesis with a special emphasize on PLM synthesis and its insertion into the cell wall. Then, we discuss the role of PLM glycosylation in regulating immune system activation and its contribution to the chronic persistent inflammation found in Candida infections and chronic inflammatory diseases.


Glycosphingolipids Inflammatory response Regulation Yeasts 



This work was supported by Inserm and by the European community’s Seventh Framework Program (FP7–2007–2013) under grant agreement no. HEALTH-F2–2010–260338 ‘ALLFUN’. We would like to thank Sofia Nascimento dos Santos for her assistance on the preparation of the illustrations.

All the experiments described in the paper comply with the current laws of the country in which they were performed.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Heung LJ, Luberto C, Del Poeta M (2006) Role of sphingolipids in microbial pathogenesis. Infect Immun 74:28–39CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Trinel PA et al (1993) Isolation and preliminary characterization of the 14- to 18-kilodalton Candida albicans antigen as a phospholipomannan containing beta-1,2-linked oligomannosides. Infect Immun 61:4398–43405PubMedCentralPubMedGoogle Scholar
  3. 3.
    Trinel PA et al (2002) Candida albicans phospholipomannan, a new member of the fungal mannose inositol phosphoceramide family. J Biol Chem 277:37260–37271CrossRefPubMedGoogle Scholar
  4. 4.
    Mille C et al (2012) Members 5 and 6 of the Candida albicans BMT family encode enzymes acting specifically on beta-mannosylation of the phospholipomannan cell-wall glycosphingolipid. Glycobiology 22:1332–1342CrossRefPubMedGoogle Scholar
  5. 5.
    Mille C et al (2004) Inactivation of CaMIT1 inhibits Candida albicans phospholipomannan beta-mannosylation, reduces virulence, and alters cell wall protein beta-mannosylation. J Biol Chem 279:47952–47960CrossRefPubMedGoogle Scholar
  6. 6.
    Bozza S, Clavaud C, Giovannini G (2009) Immune sensing of Aspergillus fumigatus proteins, glycolipids, and polysaccharides and the impact on Th immunity and vaccination. J Immunol 183:2407-2414‬‬‬‬‬‬‬Google Scholar
  7. 7.
    Dickson RC et al (1990) Isolation of mutant Saccharomyces cerevisiae strains that survive without sphingolipids. Mol Cell Biol 10:2176–2181PubMedCentralPubMedGoogle Scholar
  8. 8.
    Dickson RC et al (1997) Synthesis of mannose-(inositol-P)2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPT1 (YDR072c) gene. J Biol Chem 272:29620–29625CrossRefPubMedGoogle Scholar
  9. 9.
    Jenkins GM et al (1997) Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J Biol Chem 272:32566–32572CrossRefPubMedGoogle Scholar
  10. 10.
    Dickson RC, Sumanasekera C, Lester RL (2006) Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Prog Lipid Res 45:447–465CrossRefPubMedGoogle Scholar
  11. 11.
    Cowart LA, Obeid LM (2007) Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. Biochim Biophys Acta 1771:421–431CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Ko J, Cheah S, Fischl AS (1994) Regulation of phosphatidylinositol:ceramide phosphoinositol transferase in Saccharomyces cerevisiae. J Bacteriol 176:5181–5183PubMedCentralPubMedGoogle Scholar
  13. 13.
    Funato K, Riezman H (2001) Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast. J Cell Biol 155:949–959CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Perry RJ, Ridgway ND (2005) Molecular mechanisms and regulation of ceramide transport. Biochim Biophys Acta 1734:220–234CrossRefPubMedGoogle Scholar
  15. 15.
    Levine TP, Wiggins CA, Munro S (2000) Inositol phosphorylceramide synthase is located in the Golgi apparatus of Saccharomyces cerevisiae. Mol Biol Cell 11:2267–2281CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Nagiec MM et al (1997) Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J Biol Chem 272:9809–9817CrossRefPubMedGoogle Scholar
  17. 17.
    Lisman Q et al (2004) Protein sorting in the late Golgi of Saccharomyces cerevisiae does not require mannosylated sphingolipids. J Biol Chem 279:1020–1029CrossRefPubMedGoogle Scholar
  18. 18.
    Uemura S et al (2007) Regulation of the transport and protein levels of the inositol phosphorylceramide mannosyltransferases Csg1 and Csh1 by the Ca2+-binding protein Csg2. J Biol Chem 282:8613–8621CrossRefPubMedGoogle Scholar
  19. 19.
    Malathi K et al (2004) Mutagenesis of the putative sterol-sensing domain of yeast Niemann Pick C-related protein reveals a primordial role in subcellular sphingolipid distribution. J Cell Biol 164:547–556CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Heidler SA, Radding JA (2000) Inositol phosphoryl transferases from human pathogenic fungi. Biochim Biophys Acta 1500:147–152CrossRefPubMedGoogle Scholar
  21. 21.
    Prasad T et al (2005) Functional analysis of CaIPT1, a sphingolipid biosynthetic gene involved in multidrug resistance and morphogenesis of Candida albicans. Antimicrob Agents Chemother 49:3442–3452CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Trinel PA et al (1999) The Candida albicans phospholipomannan is a family of glycolipids presenting phosphoinositolmannosides with long linear chains of beta-1,2-linked mannose residues. J Biol Chem 274:30520–30526CrossRefPubMedGoogle Scholar
  23. 23.
    Trinel PA et al (2002) Beta-1,2-mannosylation of Candida albicans mannoproteins and glycolipids differs with growth temperature and serotype. Infect Immun 70:5274–5278CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Jouault T et al (1998) Early signal transduction induced by Candida albicans in macrophages through shedding of a glycolipid. J Infect Dis 178:792–802CrossRefPubMedGoogle Scholar
  25. 25.
    Fradin C et al (2008) Beta-1,2 oligomannose adhesin epitopes are widely distributed over the different families of Candida albicans cell wall mannoproteins and are associated through both N- and O-glycosylation processes. Infect Immun 76:4509–4517CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Shibata N, Kobayashi H, Suzuki S (2012) Immunochemistry of pathogenic yeast, Candida species, focusing on mannan. Proc Jpn Acad Ser B Phys Biol Sci 88:250–265CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Mille C et al (2008) Identification of a new family of genes involved in beta-1,2-mannosylation of glycans in Pichia pastoris and Candida albicans. J Biol Chem 283:9724–9736CrossRefPubMedGoogle Scholar
  28. 28.
    Munro CA et al (2005) Mnt1p and Mnt2p of Candida albicans are partially redundant alpha-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J Biol Chem 280:1051–1060CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Fabre E et al (2014) Characterization of the recombinant Candida albicans beta-1,2-mannosyltransferase that initiates the beta-mannosylation of cell wall phosphopeptidomannan. Biochem J 457:347–360CrossRefPubMedGoogle Scholar
  30. 30.
    Trinel PA et al (2005) Candida albicans serotype B strains synthesize a serotype-specific phospholipomannan overexpressing a beta-1,2-linked mannotriose. Mol Microbiol 58:984–998CrossRefPubMedGoogle Scholar
  31. 31.
    Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila toll protein signals activation of adaptive immunity.‬ Nature 388:394-397‬‬‬‬‬‬‬Google Scholar
  32. 32.
    Ariizumi K et al. (2000) Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning.‬ J Biol Chem 275:20157-20167‬‬‬‬‬‬‬Google Scholar
  33. 33.
    Fradin C, Poulain D, Jouault T (2000) Beta-1,2-linked oligomannosides from Candida albicans bind to a 32-kDa macrophage membrane protein homologous to the mammalian lectin galectin-3. Infect Immun 68:4391–4398CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Tada H et al. (2002) Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner.‬ Microbiol Immunol 46:503-512‬‬‬‬‬‬‬‬‬‬‬‬‬‬Google Scholar
  35. 35.
    Porcaro I et al. (2003) Mannose receptor contribution to Candida albicans phagocytosis by murine E-clone J774 macrophages.‬ J Leukoc Biol 74:206-215‬‬‬‬‬‬‬‬‬‬‬‬‬‬Google Scholar
  36. 36.
    Rouabhia M et al (2005) Virulence of the fungal pathogen Candida albicans requires the five isoforms of protein mannosyltransferases. Infect Immun 73:4571–4580CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    McGreal EP et al (2006) The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology 16:422–430CrossRefPubMedGoogle Scholar
  38. 38.
    Thornton BP et al. (1996) Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18) J Immunol 156:1235-1246‬‬‬‬‬‬‬‬‬‬‬‬‬‬Google Scholar
  39. 39.
    Esteban A et al (2011) Fungal recognition is mediated by the association of dectin-1 and galectin-3 in macrophages. Proc Natl Acad Sci U S A 108:14270–14275CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Brown GD, Gordon S (2001) Immune recognition. A new receptor for beta-glucans. Nature 413:36–37CrossRefPubMedGoogle Scholar
  41. 41.
    Jouault T et al (2006) Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J Immunol 177:4679–4687CrossRefPubMedGoogle Scholar
  42. 42.
    Jouault T et al (2003) Candida albicans phospholipomannan is sensed through toll-like receptors. J Infect Dis 188:165–172CrossRefPubMedGoogle Scholar
  43. 43.
    Li M, Chen Q, Shen Y, Liu W (2008) Candida albicans phospholipomannan triggers inflammatory responses of human keratinocytes through toll-like receptor 2. Exp Dermatol 18:603–810CrossRefPubMedGoogle Scholar
  44. 44.
    Devillers A et al (2013) Deficient beta-mannosylation of Candida albicans phospholipomannan affects the proinflammatory response in macrophages. PLoS One 8:e84771CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Jouault T, Lepage G, Bernigaud A et al (1995) Beta-1,2-linked oligomannosides from Candida albicans act as signals for tumor necrosis factor alpha production. Infect Immun 63:2378–2381PubMedCentralPubMedGoogle Scholar
  46. 46.
    Fermino ML et al (2011) LPS-induced galectin-3 oligomerization results in enhancement of neutrophil activation. PLoS One 6:e26004CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Ibata-Ombetta S et al (2001) Role of extracellular signal-regulated protein kinase cascade in macrophage killing of Candida albicans. J Leukoc Biol 70:149–154PubMedGoogle Scholar
  48. 48.
    Ibata-Ombetta S et al (2003) Candida albicans phospholipomannan promotes survival of phagocytosed yeasts through modulation of bad phosphorylation and macrophage apoptosis. J Biol Chem 278:13086–13093CrossRefPubMedGoogle Scholar
  49. 49.
    ten Oever J et al. (2013) Circulating galectin-3 in infections and non-infectious inflammatory diseases. Eur J Clin Microbiol Infect Dis 32:1605-1610‬‬‬‬‬‬‬Google Scholar
  50. 50.
    Linden JR et al (2012) The role of galectin-3 in phagocytosis of Candida albicans and Candida parapsilosis by human neutrophils. Cell Microbiol 15:1127–1142CrossRefGoogle Scholar
  51. 51.
    Tamai R, Kiyoura Y (2014) Candida albicans and Candida parapsilosis rapidly up-regulate galectin-3 secretion by human gingival epithelial cells. Mycopathologia 177:75–79CrossRefPubMedGoogle Scholar
  52. 52.
    Collette JR, Zhou H, Lorenz MC (2014) Candida albicans suppresses nitric oxide generation from macrophages via a secreted molecule. PLoS One 9:e96203CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    MacKinnon AC et al (2008) Regulation of alternative macrophage activation by galectin-3. J Immunol 180:2650–2658CrossRefPubMedGoogle Scholar
  54. 54.
    Standaert-Vitse A et al (2006) Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibody markers of Crohn’s disease. Gastroenterology 130:1764–1775CrossRefPubMedGoogle Scholar
  55. 55.
    Rehaume LM, Jouault T, Chamaillard M (2010) Lessons from the inflammasome: a molecular sentry linking Candida and Crohn’s disease. Trends Immunol 31:171–175CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Chantal Fradin
    • 1
    • 2
  • Emerson Soares Bernardes
    • 3
  • Thierry Jouault
    • 1
    • 2
    • 4
    Email author
  1. 1.Inserm U995LilleFrance
  2. 2.Université de LilleLilleFrance
  3. 3.Institute of Energy and Nuclear Research (IPEN)São PauloBrazil
  4. 4.Faculté de Médecine H. Warembourg, Pôle RechercheLilleFrance

Personalised recommendations