Advertisement

Seminars in Immunopathology

, Volume 37, Issue 1, pp 17–25 | Cite as

Commensal microbiota regulates T cell fate decision in the gut

  • Yukihiro Furusawa
  • Yuuki Obata
  • Koji HaseEmail author
Review

Abstract

Commensal microbiota shapes the intestinal immune system by regulating T helper (TH) cell lineage differentiation. For example, Bacteroides fragilis colonization not only optimizes the systemic TH1/TH2 balance, but also can induce regulatory T (Treg) cell differentiation in the gut. In addition, segmented filamentous bacteria (SFB) facilitate the development of TH17 cells in the small intestine. The 17 strains within clusters IV, XIVa, and XVIII of Clostridiales found in human feces can also induce the differentiation and expansion of Treg cells in the colon. Thus, the regulation of TH cell differentiation by commensal bacteria is evident; however, the molecular mechanisms underlying these processes remain uncertain. Recent studies have demonstrated that bacterial components, as well as their metabolites, play a central role in regulating TH cell development. Furthermore, these metabolites can elicit changes in histone posttranslational modification to modify the expression of critical regulators of T cell fate. In this review, we discuss the mechanisms and biological significance of microbiota-dependent TH differentiation.

Keywords

Microbiota TH17 cells Regulatory T cells Histone modifications DNA methylation 

Notes

Acknowledgments

This work was supported in part with grants from the Japan Society for the Promotion of Science (24117723 to K.H. and 24890293 to Y.F.), the Japan Science and Technology Agency (K.H.), and the Ministry of Health Labour and Welfare (K.H.).

Conflict of interest

The authors have no conflict of interest to disclose.

References

  1. 1.
    Nicholson JK, Holmes E, Kinross J et al (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267PubMedCrossRefGoogle Scholar
  2. 2.
    Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227–238PubMedCrossRefGoogle Scholar
  3. 3.
    Tomboli CP, Neut C, Desreumaux P, Colombel JF (2003) Dysbiosis in inflammatory bowel disease. Gut 53:1–4CrossRefGoogle Scholar
  4. 4.
    Ivanov II, Atarashi K, Manel N et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Geuking MB, Cahenzli J, Lawson MAE et al (2011) Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34:794–806PubMedCrossRefGoogle Scholar
  6. 6.
    Atarashi K, Tanoue T, Shima T et al (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–341PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Brestoff JR, Artis D (2013) Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 14:676–684PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118PubMedCrossRefGoogle Scholar
  9. 9.
    Cahenzli J, Köller Y, Wyss M et al (2013) Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14:559–570PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Koloski NA (2008) Hygiene hypothesis in inflammatory bowel disease: a critical review of the literature. World J Gastroenterol 14:165–173PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Umetsu DT, McIntire JJ, Akbari O et al (2002) Asthma: an epidemic of dysregulated immunity. Nat Immunol 3:715–720PubMedCrossRefGoogle Scholar
  12. 12.
    Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625PubMedCrossRefGoogle Scholar
  13. 13.
    Atarashi K, Honda K (2011) Microbiota in autoimmunity and tolerance. Curr Opin Immunol 23:761–768PubMedCrossRefGoogle Scholar
  14. 14.
    Tanoue T, Honda K (2012) Induction of Treg cells in the mouse colonic mucosa: a central mechanism to maintain host-microbiota homeostasis. Semin Immunol 24:50–57Google Scholar
  15. 15.
    Duan J, Kasper DL (2011) Regulation of T cells by gut commensal microbiota. Curr Opin Rheumatol 23:372–376PubMedCrossRefGoogle Scholar
  16. 16.
    Wang Q, McLoughlin RM, Cobb BA et al (2006) A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2. J Exp Med 203:2853–2863PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Imanishi T, Hara H, Suzuki S et al (2007) Cutting edge: TLR2 directly triggers Th1 effector functions. J Immunol 178:6715–6719PubMedCrossRefGoogle Scholar
  18. 18.
    Atarashi K, Nishimura J, Shima T et al (2008) ATP drives lamina propria TH17 cell differentiation. Nature 455:808–812PubMedCrossRefGoogle Scholar
  19. 19.
    Goto Y, Panea C, Nakato G et al (2014) Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 40:594–607PubMedCrossRefGoogle Scholar
  20. 20.
    Chaudhry A, Samstein RM, Treuting P et al (2011) Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34:566–578PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Walker LSK, Sansom DM (2011) The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol 11:852–863PubMedCrossRefGoogle Scholar
  22. 22.
    Riella LV, Paterson AM, Sharpe AH, Chandraker A (2012) Role of the PD-1 pathway in the immune response. Am J Transplant 12:2575–2587PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Abbas AK, Benoist C, Bluestone JA et al (2013) Regulatory T cells: recommendation to simplify the nomenclature. Nat Immunol 14:307–308PubMedCrossRefGoogle Scholar
  24. 24.
    Thornton AM, Korty PE, Tran DQ et al (2010) Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol 184:3433–3441PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Yadav M, Louvet C, Davini D et al (2012) Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J Exp Med 209:1713–1722PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Weiss JM, Bilate AM, Gobert M et al (2012) Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med 209:1732–1742CrossRefGoogle Scholar
  27. 27.
    Obata Y, Furusawa Y, Endo TA et al (2014) The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells. Nat Immunol 15:571–579PubMedCrossRefGoogle Scholar
  28. 28.
    Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci 107:12204–12209PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Frank DN, St Amand AL, Feldman RA et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci 104:13780–13785PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Sokol H, Seksik P, Furet JP et al (2009) Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15:1183–1189PubMedCrossRefGoogle Scholar
  31. 31.
    Atarashi K, Tanoue T, Oshima K et al (2013) Induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:232–236PubMedCrossRefGoogle Scholar
  32. 32.
    Smith PM, Howitt MR, Panikov N et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573PubMedCrossRefGoogle Scholar
  33. 33.
    Arpaia N, Campbell C, Fan X et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–455PubMedCrossRefGoogle Scholar
  34. 34.
    Furusawa Y, Obata Y, Fukuda S et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450PubMedCrossRefGoogle Scholar
  35. 35.
    Singh N, Gurav A, Sivaprakasam S et al (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:128–139PubMedCrossRefGoogle Scholar
  36. 36.
    Pryde SE, Duncan SH, Hold GL et al (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139PubMedCrossRefGoogle Scholar
  37. 37.
    Narushima S, Sugiura Y, Oshima K et al (2014) Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbe 5:333–339CrossRefGoogle Scholar
  38. 38.
    Annison G, Illman RJ, Topping DL (2003) Acetylated, propionylated or butyrylated starches raise large bowel short-chain fatty acids preferentially when fed to rats. J Nutr 133:3523–3528PubMedGoogle Scholar
  39. 39.
    Kim SV, Xiang WV, Kwak C et al (2013) GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 340:1456–1459PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Trompette AEL, Gollwitzer ES, Yadava K et al (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20:159–166PubMedCrossRefGoogle Scholar
  41. 41.
    Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304PubMedCrossRefGoogle Scholar
  42. 42.
    Kornberg RD, Lorch Y (1992) Chromatin structure and transcription. Ann Rev Cell Biol 8:563–587PubMedCrossRefGoogle Scholar
  43. 43.
    Jenuwein T (2001) Translating the histone code. Science 293:1074–1080PubMedCrossRefGoogle Scholar
  44. 44.
    Zhang Y (2003) Transcriptional regulation by histone ubiquitination and deubiquitination. Gene Dev 17:2733–2740PubMedCrossRefGoogle Scholar
  45. 45.
    Lee DY, Hayes JJ, Pruss D, Wolffe AP (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:73–84PubMedCrossRefGoogle Scholar
  46. 46.
    Weng N-P, Araki Y, Subedi K (2012) The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nat Rev Immunol 12:306–315PubMedCrossRefGoogle Scholar
  47. 47.
    Zediak VP, Wherry EJ, Berger SL (2011) The contribution of epigenetic memory to immunologic memory. Curr Opin Gene Dev 21:154–159CrossRefGoogle Scholar
  48. 48.
    Turner SJ (2013) T cell immunity as a tool for studying epigenetic regulation of cellular differentiation. Front Genet 4(218):1–10Google Scholar
  49. 49.
    Afzali B (2013) Thymic versus induced regulatory T cells—who regulates the regulators? Front Immunol 4(169):1–22Google Scholar
  50. 50.
    Zheng Y, Josefowicz S, Chaudhry A et al (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463:808–812PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Candido EP, Reeves R, Davie JR (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14:105–113PubMedCrossRefGoogle Scholar
  52. 52.
    Licciardi PV, Wong S-S, Tang ML, Karagiannis TC (2010) Epigenome targeting by probiotic metabolites. Gut Pathog 2:24PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Vinolo MA, Rodrigues HG, Nachbar RT et al (2011) Regulation of inflammation by short chain fatty acids. Nutrient 3:858–876CrossRefGoogle Scholar
  54. 54.
    Chang PV, Hao L, Offermanns S et al (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci 111:2247–2252PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: what are the cancer relevant targets? Cancer Lett 277:8–21PubMedCrossRefGoogle Scholar
  56. 56.
    Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133:2485S–2493SPubMedGoogle Scholar
  57. 57.
    Beier UH, Wang L, Han R et al (2012) Histone deacetylases 6 and 9 and sirtuin-1 control Foxp3+ regulatory T cell function through shared and isoform-specific mechanisms. Sci Signal 5:ra45PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Tao R, de Zoeten EF, Ozkaynak E et al (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13:1299–1307PubMedCrossRefGoogle Scholar
  59. 59.
    Burchill MA, Yang J, Vogtenhuber C et al (2006) IL-2 receptor-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 178:280–290CrossRefGoogle Scholar
  60. 60.
    van Loosdregt J, Vercoulen Y, Guichelaar T et al (2010) Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115:965–974PubMedCrossRefGoogle Scholar
  61. 61.
    Kim HP, Leonard WJ (2007) CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med 204:1543–1551PubMedCentralPubMedGoogle Scholar
  62. 62.
    Huehn J, Polansky JK, Hamann A (2009) Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol 9:83–89PubMedCrossRefGoogle Scholar
  63. 63.
    Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Rev Biotechnol 28:1057–1068CrossRefGoogle Scholar
  64. 64.
    Josefowicz SZ, Wilson CB, Rudensky AY (2009) Cutting edge: TCR stimulation is sufficient for induction of Foxp3 expression in the absence of DNA methyltransferase 1. J Immunol 182:6648–6652PubMedCrossRefGoogle Scholar
  65. 65.
    Lal G, Zhang N, van der Touw W et al (2009) Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 182:259–273PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Sharif J, Muto M, Takebayashi S-I et al (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450:908–912PubMedCrossRefGoogle Scholar
  67. 67.
    Bertoli C, Skotheim JM, de Bruin RAM (2013) Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol 14:518–528PubMedCrossRefGoogle Scholar
  68. 68.
    Yang W, Bancroft L, Augenlicht LH (2005) Methylation in the p21WAF1/cip1 promoter of Apc+/−, p21+/− mice and lack of response to sulindac. Oncogene 24:2104–2109PubMedCrossRefGoogle Scholar
  69. 69.
    Kim JK, Esteve PO, Jacobsen SE, Pradhan S (2008) UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells. Nucl Acid Res 37:493–505CrossRefGoogle Scholar
  70. 70.
    Koinuma D, Tsutsumi S, Kamimura N et al (2008) Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor signaling. Mol Cell Biol 29:172–186PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6:1142–1151PubMedCrossRefGoogle Scholar
  72. 72.
    Yang X-P, Ghoreschi K, Steward-Tharp SM et al (2011) Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol 12:247–254PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Biochemistry, Graduate School of Pharmaceutical ScienceKeio UniversityTokyoJapan
  2. 2.The Institute of Medical ScienceThe University of TokyoTokyoJapan
  3. 3.Graduate School of MedicineChiba UniversityChibaJapan

Personalised recommendations