Seminars in Immunopathology

, Volume 36, Issue 3, pp 301–311 | Cite as

The pathogenesis and diagnosis of systemic lupus erythematosus: still not resolved

Review

Abstract

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with various clinical manifestations affecting different tissues. A characteristic feature of SLE is the presence of autoantibodies against double-stranded (ds)DNA, histones and nucleosomes, and other chromatin components. SLE is a prototype type III hypersensitivity reaction. Local deposition of anti-nuclear antibodies in complex with released chromatin induces serious inflammatory conditions by activation of the complement system. The severe renal manifestation, lupus nephritis, is classified based on histological findings in renal biopsies. Apoptotic debris, including chromatin, is present in the extracellular matrix and circulation of patients with SLE. This may be due to an aberrant process of apoptosis and/or insufficient clearance of apoptotic cells/chromatin. The non-cleared apoptotic debris may lead to activation of both the innate and adaptive immune systems. In addition, an aberrant presentation of peptides by antigen-presenting cells, disturbed selection processes for lymphocytes, and deregulated lymphocyte responses may be involved in the development of autoimmunity. In the present review, we briefly will summarize current knowledge on the pathogenesis of SLE. We will also critically discuss and challenge central issues that need to be addressed in order to fully understand the pathogenic mechanisms involved in the development of SLE and in order to have an improved diagnosis for SLE. Disappointingly, in our opinion, there are still more questions than answers for the pathogenesis, diagnosis, and treatment of SLE.

Keywords

Systemic lupus erythematosus Lupus nephritis Chromatin Apoptosis NETs DNaseI Renal 

Notes

Acknowledgments

Elmar Pieterse is acknowledged for the help in preparing Fig. 1. We thank Rod Wolstenholme (Faculty of Health Sciences, Uit) for expert help in preparing Fig. 2. This study was supported by Northern Norway Regional Health Authority Medical Research Program (Grant nos. SFP-100-04 and SFP-101-04), the University of Tromsø as Milieu (OPR), and the Dutch Arthritis Association (Grant 09-1-308; JvdV).

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Amital H, Heilweil M, Ulmansky R et al (2005) Treatment with a laminin-derived peptide suppresses lupus nephritis. J Immunol 175:5516–5523PubMedGoogle Scholar
  2. 2.
    Andrzejewski C Jr, Rauch J, Lafer E et al (1981) Antigen-binding diversity and idiotypic cross-reactions among hybridoma autoantibodies to DNA. J Immunol 126:226–231PubMedGoogle Scholar
  3. 3.
    Arbuckle MR, Mcclain MT, Rubertone MV et al (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349:1526–1533PubMedGoogle Scholar
  4. 4.
    Ardoin SP, Pisetsky DS (2008) Developments in the scientific understanding of lupus. Arthritis Res Ther 10:218PubMedCentralPubMedGoogle Scholar
  5. 5.
    Ardoin SP, Pisetsky DS (2008) The role of cell death in the pathogenesis of autoimmune disease: HMGB1 and microparticles as intercellular mediators of inflammation. Mod Rheumatol 18:319–326PubMedCentralPubMedGoogle Scholar
  6. 6.
    Ash Lerner A, Ginsberg Strauss M, Pewzner Jung Y et al (1997) Expression of an anti-DNA-associated VH gene in immunized and autoimmune mice. J Immunol 159:1508–1519PubMedGoogle Scholar
  7. 7.
    Basnakian AG, Apostolov EO, Yin X et al (2005) Cisplatin nephrotoxicity is mediated by deoxyribonuclease I. J Am Soc Nephrol 16:697–702PubMedGoogle Scholar
  8. 8.
    Berden JH (2003) Lupus nephritis: consequence of disturbed removal of apoptotic cells? Neth J Med 61:233–238PubMedGoogle Scholar
  9. 9.
    Berden JH, Licht R, Van Bruggen MC et al (1999) Role of nucleosomes for induction and glomerular binding of autoantibodies in lupus nephritis. Curr Opin Nephrol Hypertens 8:299–306PubMedGoogle Scholar
  10. 10.
    Boackle SA, Holers VM, Chen X et al (2001) Cr2, a candidate gene in the murine Sle1c lupus susceptibility locus, encodes a dysfunctional protein. Immunity 15:775–785PubMedGoogle Scholar
  11. 11.
    Bolland S, Yim YS, Tus K et al (2002) Genetic modifiers of systemic lupus erythematosus in FcgammaRIIB(−/−) mice. J Exp Med 195:1167–1174PubMedCentralPubMedGoogle Scholar
  12. 12.
    Boule MW, Broughton C, Mackay F et al (2004) Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J Exp Med 199:1631–1640PubMedCentralPubMedGoogle Scholar
  13. 13.
    Bouts YM, Wolthuis DFGJ, Dirkx MFM et al (2012) Apoptosis and NET formation in the pathogenesis of SLE. Autoimmunity 45:597–601PubMedGoogle Scholar
  14. 14.
    Brigido MM, Stollar BD (1991) Two induced anti-Z-DNA monoclonal antibodies use VH gene segments related to those of anti-DNA autoantibodies. J Immunol 146:2005–2009PubMedGoogle Scholar
  15. 15.
    Carroll P, Stafford D, Schwartz RS et al (1985) Murine monoclonal anti-DNA autoantibodies bind to endogenous bacteria. J Immunol 135:1086–1090PubMedGoogle Scholar
  16. 16.
    Casciola-Rosen L, Andrade F, Ulanet D et al (1999) Cleavage by granzyme B is strongly predictive of autoantigen status: Implications for initiation of autoimmunity. J Exp Med 190:815–825PubMedCentralPubMedGoogle Scholar
  17. 17.
    Casciolarosen LA, Anhalt G, Rosen A (1994) Autoantigens targeted in systemic lupus-erythematosus are clustered in 2 populations of surface-structures on apoptotic keratinocytes. J Exp Med 179:1317–1330Google Scholar
  18. 18.
    Choi J, Kim ST, Craft J (2012) The pathogenesis of systemic lupus erythematosus—an update. Curr Opin Immunol 24:651–657PubMedCentralPubMedGoogle Scholar
  19. 19.
    Dang H, Harbeck RJ (1982) A comparison of anti-DNA antibodies from serum and kidney eluates of NZB x NZW F1 mice. J Clin Lab Immunol 9:139–145PubMedGoogle Scholar
  20. 20.
    Davies JM (1997) Molecular mimicry: can epitope mimicry induce autoimmune disease? Immunol Cell Biol 75:113–126PubMedGoogle Scholar
  21. 21.
    Deocharan B, Qing X, Lichauco J et al (2002) Alpha-actinin is a cross-reactive renal target for pathogenic anti-DNA antibodies. J Immunol 168:3072–3078PubMedGoogle Scholar
  22. 22.
    Desai DD, Krishnan MR, Swindle JT et al (1993) Antigen-specific induction of antibodies against native mammalian DNA in nonautoimmune mice. J Immunol 151:1614–1626PubMedGoogle Scholar
  23. 23.
    Diamond B, Volpe BT (2012) A model for lupus brain disease. Immunol Rev 248:56–67PubMedGoogle Scholar
  24. 24.
    Dieker JW, Fransen JH, Van Bavel CC et al (2007) Apoptosis-induced acetylation of histones is pathogenic in systemic lupus erythematosus. Arthritis Rheum 56:1921–1933PubMedGoogle Scholar
  25. 25.
    Dieker JW, Van der Vlag J, Berden JH (2004) Deranged removal of apoptotic cells: its role in the genesis of lupus. Nephrol Dial Transplant 19:282–285PubMedGoogle Scholar
  26. 26.
    Dieker JW, Van der Vlag J, Berden JH (2002) Triggers for anti-chromatin autoantibody production in SLE. Lupus 11:856–864PubMedGoogle Scholar
  27. 27.
    Doyle HA, Mamula MJ (2005) Posttranslational modifications of self-antigens. Ann N Y Acad Sci 1050:1–9PubMedGoogle Scholar
  28. 28.
    Ehrenstein MR, Katz DR, Griffiths MH et al (1995) Human IgG anti-DNA antibodies deposit in kidneys and induce proteinuria in SCID mice. Kidney Int 48:705–711PubMedGoogle Scholar
  29. 29.
    Fairhurst AM, Hwang SH, Wang A et al (2008) Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur J Immunol 38:1971–1978PubMedCentralPubMedGoogle Scholar
  30. 30.
    Fenton K, Fismen S, Hedberg A et al (2009) Anti-dsDNA antibodies promote initiation, and acquired loss of renal Dnase1 promotes progression of lupus nephritis in autoimmune (NZBxNZW)F1 mice. PLoS One 4:e8474PubMedCentralPubMedGoogle Scholar
  31. 31.
    Fenton KA, Tommeras B, Marion TN et al (2010) Pure anti-dsDNA mAbs need chromatin structures to promote glomerular mesangial deposits in BALB/c mice. Autoimmunity 43:179–188PubMedGoogle Scholar
  32. 32.
    Fismen S, Hedberg A, Fenton K et al (2009) Circulating chromatin-anti-chromatin antibody complexes bind with high affinity to dermo-epidermal structures in murine and human lupus nephritis. Lupus 18:597–607Google Scholar
  33. 33.
    Fismen S, Thiyagarajan D, Seredkina N et al. (2013) Impact of the tumor necrosis factor receptor-associated protein 1 (Trap1) on renal DNaseI shutdown and on progression of murine and human lupus nephritis. Am J Pathol 182:688--700Google Scholar
  34. 34.
    Foster MH (2007) T cells and B cells in lupus nephritis. Semin Nephrol 27:47–58PubMedCentralPubMedGoogle Scholar
  35. 35.
    Fransen JH, Hilbrands LB, Jacobs CW et al (2009) Both early and late apoptotic blebs are taken up by DC and induce IL-6 production. Autoimmunity 42:325–327PubMedGoogle Scholar
  36. 36.
    Fransen JH, Hilbrands LB, Ruben J et al (2009) Mouse dendritic cells matured by ingestion of apoptotic blebs induce T cells to produce interleukin-17. Arthritis Rheum 60:2304–2313PubMedGoogle Scholar
  37. 37.
    Fransen JH, Hilbrands LB, Koeter CM, Berden JH, Van der Vlag J. (2009) The role of apoptosis and removal of apoptotic cells in the genesis of systemic lupus erythematosus. Arch Med Sci 5:S466-S477 Google Scholar
  38. 38.
    Gaipl US, Sheriff A, Franz S et al (2006) Inefficient clearance of dying cells and autoreactivity. Curr Top Microbiol Immunol 305:161–176PubMedGoogle Scholar
  39. 39.
    Garcia-Romo GS, Caielli S, Vega B et al (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 3:73ra20PubMedCentralPubMedGoogle Scholar
  40. 40.
    Garrett-Sinha LA, John S, Gaffen SL (2008) IL-17 and the Th17 lineage in systemic lupus erythematosus. Curr Opin Rheumatol 20:519–525PubMedGoogle Scholar
  41. 41.
    Gilkeson GS, Grudier JP, Karounos DG et al (1989) Induction of anti-double stranded DNA antibodies in normal mice by immunization with bacterial DNA. J Immunol 142:1482–1486PubMedGoogle Scholar
  42. 42.
    Gilkeson GS, Ruiz P, Howell D et al (1993) Induction of immune-mediated glomerulonephritis in normal mice immunized with bacterial DNA. Clin Immunol Immunopathol 68:283–292PubMedGoogle Scholar
  43. 43.
    Green MC, Shultz LD (1975) Motheaten, an immunodeficient mutant of the mouse. I. Genetics and pathology. J Hered 66:250–258PubMedGoogle Scholar
  44. 44.
    Griffith J, Bleyman M, Rauch CA et al (1986) Visualization of the bent helix in kinetoplast DNA by electron microscopy. Cell 46:717–724PubMedGoogle Scholar
  45. 45.
    Grootscholten C, Van Bruggen MC, Van Der Pijl JW et al (2003) Deposition of nucleosomal antigens (histones and DNA) in the epidermal basement membrane in human lupus nephritis. Arthritis Rheum 48:1355–1362PubMedGoogle Scholar
  46. 46.
    Guerra SG, Vyse TJ, Cunninghame Graham DS (2012) The genetics of lupus: a functional perspective. Arthritis Res Ther 14:211PubMedCentralPubMedGoogle Scholar
  47. 47.
    Hahn BH (1998) Antibodies to DNA. N Engl J Med 338:1359–1368PubMedGoogle Scholar
  48. 48.
    Haugbro K, Nossent JC, Winkler T et al (2004) Anti-dsDNA antibodies and disease classification in antinuclear antibody positive patients: the role of analytical diversity. Ann Rheum Dis 63:386–394PubMedCentralPubMedGoogle Scholar
  49. 49.
    Hedberg A, Fismen S, Fenton KA et al (2011) Heparin exerts a dual effect on murine lupus nephritis by enhancing enzymatic chromatin degradation and preventing chromatin binding in glomerular membranes. Arthritis Rheum 63:1065–1075PubMedGoogle Scholar
  50. 50.
    Hedberg A, Mortensen ES, Rekvig OP (2011) Chromatin as a target antigen in human and murine lupus nephritis. Arthritis Res Ther 13:214PubMedCentralPubMedGoogle Scholar
  51. 51.
    Herrmann M, Voll RE, Zoller OM et al (1998) Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 41:1241–1250PubMedGoogle Scholar
  52. 52.
    Hobson DJ, Wei W, Steinmetz LM et al (2012) RNA polymerase II collision interrupts convergent transcription. Mol Cell 48:365–374PubMedCentralPubMedGoogle Scholar
  53. 53.
    Huerta PT, Kowal C, Degiorgio LA et al (2006) Immunity and behavior: antibodies alter emotion. Proc Natl Acad Sci U S A 103:678–683PubMedCentralPubMedGoogle Scholar
  54. 54.
    Isenberg D, Lesavre P (2007) Lupus nephritis: assessing the evidence, considering the future. Lupus 16:210–211PubMedGoogle Scholar
  55. 55.
    Isenberg DA, Ehrenstein MR, Longhurst C et al (1994) The origin, sequence, structure, and consequences of developing anti-DNA antibodies. A human perspective. Arthritis Rheum 37:169–180PubMedGoogle Scholar
  56. 56.
    Isenberg DA, Manson JJ, Ehrenstein MR et al (2007) Fifty years of anti-ds DNA antibodies: are we approaching journey's end? Rheumatology (Oxford) 46:1052–1056Google Scholar
  57. 57.
    Izui S (1990) Autoimmune accelerating genes, lpr and Yaa, in murine systemic lupus erythematosus. Autoimmunity 6:113–129PubMedGoogle Scholar
  58. 58.
    Izui S, Kelley VE, Masuda K et al (1984) Induction of various autoantibodies by mutant gene lpr in several strains of mice. J Immunol 133:227–233PubMedGoogle Scholar
  59. 59.
    Jang YJ, Stollar BD (2003) Anti-DNA antibodies: aspects of structure and pathogenicity. Cell Mol Life Sci 60:309–320PubMedGoogle Scholar
  60. 60.
    Balow JE, Boumpas DT, Ausin HA (1999) Systemic lupus erythematosus and the kidney. In: Lahiota RG (ed) Systemic lupus erythematosus, 3rd edn. Academic, San Diego, pp 657–685Google Scholar
  61. 61.
    Kalaaji M, Fenton KA, Mortensen ES et al (2007) Glomerular apoptotic nucleosomes are central target structures for nephritogenic antibodies in human SLE nephritis. Kidney Int 71:664–672PubMedGoogle Scholar
  62. 62.
    Kalaaji M, Mortensen E, Jorgensen L et al (2006) Nephritogenic lupus antibodies recognize glomerular basement membrane-associated chromatin fragments released from apoptotic intraglomerular cells. Am J Pathol 168:1779–1792PubMedCentralPubMedGoogle Scholar
  63. 63.
    Kalaaji M, Sturfelt G, Mjelle JE et al (2006) Critical comparative analyses of anti-alpha-actinin and glomerulus-bound antibodies in human and murine lupus nephritis. Arthritis Rheum 54:914–926PubMedGoogle Scholar
  64. 64.
    Kalsi JK, Martin AC, Hirabayashi Y et al (1996) Functional and modelling studies of the binding of human monoclonal anti-DNA antibodies to DNA. Mol Immunol 33:471–483PubMedGoogle Scholar
  65. 65.
    Kaplan MJ (2011) Neutrophils in the pathogenesis and manifestations of SLE. Nat Rev Rheumatol 7:691–699PubMedCentralPubMedGoogle Scholar
  66. 66.
    Krishnan MR, Wang C, Marion TN (2012) Anti-DNA autoantibodies initiate experimental lupus nephritis by binding directly to the glomerular basement membrane in mice. Kidney Int 82:184–192PubMedCentralPubMedGoogle Scholar
  67. 67.
    Kruse K, Janko C, Urbonaviciute V et al (2010) Inefficient clearance of dying cells in patients with SLE: anti-dsDNA autoantibodies, MFG-E8, HMGB-1 and other players. Apoptosis Int J Program Cell Death 15:1098–1113Google Scholar
  68. 68.
    Lafer EM, Rauch J, Andrzejewski C Jr et al (1981) Polyspecific monoclonal lupus autoantibodies reactive with both polynucleotides and phospholipids. J Exp Med 153:897–909PubMedGoogle Scholar
  69. 69.
    Lande R, Ganguly D, Facchinetti V et al (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 3:73ra19PubMedCentralPubMedGoogle Scholar
  70. 70.
    Lefkowith JB, Gilkeson GS (1996) Nephritogenic autoantibodies in lupus: current concepts and continuing controversies. Arthritis Rheum 39:894–903PubMedGoogle Scholar
  71. 71.
    Lerner J, Ginsberg M, Marion TN et al (1997) Analysis of B/W-DNA 16 V(H) gene expression following DNA-peptide immunization. Lupus 6:328–329PubMedGoogle Scholar
  72. 72.
    Licht R, Dieker JW, Jacobs CW et al (2004) Decreased phagocytosis of apoptotic cells in diseased SLE mice. J Autoimmun 22:139–145PubMedGoogle Scholar
  73. 73.
    Liu Z, Davidson A (2012) Taming lupus-a new understanding of pathogenesis is leading to clinical advances. Nat Med 18:871–882PubMedCentralPubMedGoogle Scholar
  74. 74.
    Luijten RKMC, Fritsch-Stork RD, Bijlsma JWJ et al (2013) The use of glucocorticoids in systemic lupus erythematosus. After 60 years still more an art than science. Autoimmun Rev 12:617–628PubMedGoogle Scholar
  75. 75.
    Khalil M, Spatz L, Diamond B (1999) Anti-DNA antibodies. In: Lahita RG (ed) Systemic lupus erythematosus, 3rd edn. Academic, San Diego, pp 197–217Google Scholar
  76. 76.
    Madaio MP, Hodder S, Schwartz RS et al (1984) Responsiveness of autoimmune and normal mice to nucleic acid antigens. J Immunol 132:872–876PubMedGoogle Scholar
  77. 77.
    Mageed RA, Zack DJ (2002) Cross-reactivity and pathogenicity of anti-DNA autoantibodies in systemic lupus erythematosus. Lupus 11:783–786PubMedGoogle Scholar
  78. 78.
    Mak A, Isenberg DA, Lau CS (2013) Global trends, potential mechanisms and early detection of organ damage in SLE. Nat Rev Rheumatol 9:301–310PubMedGoogle Scholar
  79. 79.
    Meacock R, Dale N, Harrison MJ (2013) The humanistic and economic burden of systemic lupus erythematosus: a systematic review. Pharmacoeconomics 31:49–61PubMedGoogle Scholar
  80. 80.
    Mjelle JE, Kalaaji M, Rekvig OP (2009) Exposure of chromatin and not high affinity for dsDNA determines the nephritogenic impact of anti-dsDNA antibodies in (NZBxNZW)F1 mice. Autoimmunity 42:104–111PubMedGoogle Scholar
  81. 81.
    Mjelle JE, Rekvig OP, Fenton KA (2007) Nucleosomes possess a high affinity for glomerular laminin and collagen IV and bind nephritogenic antibodies in murine lupus-like nephritis. Ann Rheum Dis 66:1661–1668PubMedCentralPubMedGoogle Scholar
  82. 82.
    Moens U, Seternes OM, Hey AW et al (1995) In vivo expression of a single viral DNA-binding protein generates systemic lupus erythematosus-related autoimmunity to double-stranded DNA and histones. Proc Natl Acad Sci U S A 92:12393–12397PubMedCentralPubMedGoogle Scholar
  83. 83.
    Mortensen ES, Fenton KA, Rekvig OP (2008) Lupus nephritis: the central role of nucleosomes revealed. Am J Pathol 172:275–283PubMedCentralPubMedGoogle Scholar
  84. 84.
    Mortensen ES, Rekvig OP (2009) Nephritogenic potential of anti-DNA antibodies against necrotic nucleosomes. J Am Soc Nephrol 20:696–704PubMedGoogle Scholar
  85. 85.
    Mostoslavsky G, Fischel R, Yachimovich N et al (2001) Lupus anti-DNA autoantibodies cross-react with a glomerular structural protein: a case for tissue injury by molecular mimicry. Eur J Immunol 31:1221–1227PubMedGoogle Scholar
  86. 86.
    Munoz LE, Janko C, Schulze C et al (2010) Autoimmunity and chronic inflammation—two clearance-related steps in the etiopathogenesis of SLE. Autoimmun Rev 10:38–42PubMedGoogle Scholar
  87. 87.
    Munoz LE, Lauber K, Schiller M et al (2010) The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol 6:280–289PubMedGoogle Scholar
  88. 88.
    Munoz LE, Van Bavel C, Franz S et al (2008) Apoptosis in the pathogenesis of systemic lupus erythematosus. Lupus 17:371–375PubMedGoogle Scholar
  89. 89.
    Ohteki T, Hessel A, Bachmann MF et al (1999) Identification of a cross-reactive self ligand in virus-mediated autoimmunity. Eur J Immunol 29:2886–2896PubMedGoogle Scholar
  90. 90.
    Oldstone MB (1987) Molecular mimicry and autoimmune disease [published erratum appears in Cell 1987 Dec 4;51(5):878]. Cell 50:819–820PubMedGoogle Scholar
  91. 91.
    Petri M, Orbai AM, Alarcon GS et al (2012) Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 64:2677–2686PubMedCentralPubMedGoogle Scholar
  92. 92.
    Pisetsky DS (2012) Antinuclear antibodies in rheumatic disease: a proposal for a function-based classification. Scand J Immunol 76:223–228PubMedGoogle Scholar
  93. 93.
    Pisetsky DS (1997) Specificity and immunochemical properties of antibodies to bacterial DNA. Methods 11:55–61PubMedGoogle Scholar
  94. 94.
    Pisitkun P, Deane JA, Difilippantonio MJ et al (2006) Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312:1669–1672PubMedGoogle Scholar
  95. 95.
    Price JV, Tangsombatvisit S, Xu GY et al (2012) On silico peptide microarrays for high-resolution mapping of antibody epitopes and diverse protein-protein interactions. Nat Med 18:1434−1440Google Scholar
  96. 96.
    Punaro MG (2013) The treatment of systemic lupus proliferative nephritis. Pediatr Nephrol 28:2069–2078PubMedGoogle Scholar
  97. 97.
    Putterman C, Diamond B (1998) Immunization with a peptide surrogate for double-stranded DNA (dsDNA) induces autoantibody production and renal immunoglobulin deposition. J Exp Med 188:29–38PubMedCentralPubMedGoogle Scholar
  98. 98.
    Rahman A, Isenberg DA (2008) Systemic lupus erythematosus. N Engl J Med 358:929–939PubMedGoogle Scholar
  99. 99.
    Ray SK, Putterman C, Diamond B (1996) Pathogenic autoantibodies are routinely generated during the response to foreign antigen: a paradigm for autoimmune disease. Proc Natl Acad Sci U S A 93:2019–2024PubMedCentralPubMedGoogle Scholar
  100. 100.
    Rekvig OP, Moens U, Sundsfjord A et al (1997) Experimental expression in mice and spontaneous expression in human SLE of polyomavirus T-antigen. A molecular basis for induction of antibodies to DNA and eukaryotic transcription factors. J Clin Invest 99:2045–2054PubMedCentralPubMedGoogle Scholar
  101. 101.
    Rekvig OP, Nossent JC (2003) Anti-double-stranded DNA antibodies, nucleosomes, and systemic lupus erythematosus: a time for new paradigms? Arthritis Rheum 48:300–312PubMedGoogle Scholar
  102. 102.
    Ronnblom L, Alm GV, Eloranta ML (2009) Type I interferon and lupus. Curr Opin Rheumatol 21:471–477PubMedGoogle Scholar
  103. 103.
    Rumore PM, Steinman CR (1990) Endogenous circulating DNA in systemic lupus erythematosus. Occurrence as multimeric complexes bound to histone. J Clin Invest 86:69–74PubMedCentralPubMedGoogle Scholar
  104. 104.
    Sabbaga J, Line SR, Potocnjak P et al (1989) A murine nephritogenic monoclonal anti-DNA autoantibody binds directly to mouse laminin, the major non-collagenous protein component of the glomerular basement membrane. Eur J Immunol 19:137–143PubMedGoogle Scholar
  105. 105.
    Seredkina N, Rekvig OP (2011) Acquired loss of renal nuclease activity is restricted to DNasel and is an organ-selective feature in murine lupus nephritis. Am J Pathol 179:1120–1128PubMedCentralPubMedGoogle Scholar
  106. 106.
    Seredkina N, Van der Vlag J, Berden J et al (2013) Lupus nephritis: enigmas, conflicting models and an emerging concept. Mol Med 19:161–169PubMedCentralPubMedGoogle Scholar
  107. 107.
    Seredkina N, Zykova SN, Rekvig OP (2009) Progression of murine lupus nephritis is linked to acquired renal Dnase1 deficiency and not to up-regulated apoptosis. Am J Pathol 175:97–106PubMedCentralPubMedGoogle Scholar
  108. 108.
    Shearwin KE, Callen BP, Egan JB (2005) Transcriptional interference—a crash course. Trends Genet 21:339–345PubMedCentralPubMedGoogle Scholar
  109. 109.
    Shilatifard A (2004) Transcriptional elongation control by RNA polymerase II: a new frontier. Biochim Biophys Acta 1677:79–86PubMedGoogle Scholar
  110. 110.
    Shlomchik M, Mascelli M, Shan H et al (1990) Anti-DNA antibodies from autoimmune mice arise by clonal expansion and somatic mutation. J Exp Med 171:265–292PubMedGoogle Scholar
  111. 111.
    Shlomchik MJ, Marshak-Rothstein A, Wolfowicz CB et al (1987) The role of clonal selection and somatic mutation in autoimmunity. Nature 328:805–811PubMedGoogle Scholar
  112. 112.
    Stollar BD (1986) Antibodies to DNA. CRC Crit Rev Biochem 20:1–36PubMedGoogle Scholar
  113. 113.
    Stollar BD (1989) Immunochemistry of DNA. Int Rev Immunol 5:1–22PubMedGoogle Scholar
  114. 114.
    Sundar K, Jacques S, Gottlieb P et al (2004) Expression of the Epstein-Barr virus nuclear antigen-1 (EBNA-1) in the mouse can elicit the production of anti-dsDNA and anti-Sm antibodies. J Autoimmun 23:127–140PubMedGoogle Scholar
  115. 115.
    Svejstrup JQ (2013) RNA polymerase II transcript elongation. Biochim Biophys Acta 1829:1PubMedGoogle Scholar
  116. 116.
    Tan EM, Cohen AS, Fries JF et al (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25:1271–1277PubMedGoogle Scholar
  117. 117.
    Thiyagarajan D, Fismen S, Seredkina N et al (2012) Silencing of renal DNaseI in murine lupus nephritis imposes exposure of large chromatin fragments and activation of toll like receptors and the Clec4e. PLoS One 7:e34080PubMedCentralPubMedGoogle Scholar
  118. 118.
    Tillman DM, Jou NT, Hill RJ et al (1992) Both IgM and IgG anti-DNA antibodies are the products of clonally selective B cell stimulation in (NZB x NZW)F1 mice. J Exp Med 176:761–779PubMedGoogle Scholar
  119. 119.
    Tsokos GC (2011) Mechanisms of disease systemic lupus erythematosus. N Engl J Med 365:2110–2121PubMedGoogle Scholar
  120. 120.
    Urbonaviciute V, Furnrohr BG, Meister S et al (2008) Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med 205:3007–3018PubMedCentralPubMedGoogle Scholar
  121. 121.
    Utz PJ, Anderson P (1998) Posttranslational protein modifications, apoptosis, and the bypass of tolerance to autoantigens. Arthritis Rheum Us 41:1152–1160Google Scholar
  122. 122.
    Utz PJ, Gensler TJ, Anderson P (2000) Death, autoantigen modifications, and tolerance. Arthritis Res 2:101–114PubMedCentralPubMedGoogle Scholar
  123. 123.
    Van Bavel CC, Dieker J, Muller S et al (2009) Apoptosis-associated acetylation on histone H2B is an epitope for lupus autoantibodies. Mol Immunol 47:511–516PubMedGoogle Scholar
  124. 124.
    Van Bavel CC, Dieker JW, Kroeze Y et al (2011) Apoptosis-induced histone H3 methylation is targeted by autoantibodies in systemic lupus erythematosus. Ann Rheum Dis 70:201–207PubMedGoogle Scholar
  125. 125.
    Van Bavel CC, Dieker JW, Tamboer WP et al (2010) Lupus-derived monoclonal autoantibodies against apoptotic chromatin recognize acetylated conformational epitopes. Mol Immunol 48:248–256PubMedGoogle Scholar
  126. 126.
    Van Bavel CC, Fenton KA, Rekvig OP et al (2008) Glomerular targets of nephritogenic autoantibodies in systemic lupus erythematosus. Arthritis Rheum 58:1892–1899PubMedGoogle Scholar
  127. 127.
    Van Bavel CC, Van Der Vlag J, Berden JH (2007) Glomerular binding of anti-dsDNA autoantibodies: the dispute resolved? Kidney Int 71:600–601PubMedGoogle Scholar
  128. 128.
    Van Bruggen MC, Kramers C, Berden JH (1996) Autoimmunity against nucleosomes and lupus nephritis. Ann Med Interne Paris 147:485–489PubMedGoogle Scholar
  129. 129.
    Van Bruggen MC, Kramers C, Hylkema MN et al (1994) Pathophysiology of lupus nephritis: the role of nucleosomes. Neth J Med 45:273–279PubMedGoogle Scholar
  130. 130.
    Van Bruggen MC, Kramers C, Hylkema MN et al (1996) Significance of anti-nuclear and anti-extracellular matrix autoantibodies for albuminuria in murine lupus nephritis; a longitudinal study on plasma and glomerular eluates in MRL/l mice. Clin Exp Immunol 105:132–139PubMedGoogle Scholar
  131. 131.
    Van Bruggen MC, Walgreen B, Rijke TP et al (1997) Antigen specificity of anti-nuclear antibodies complexed to nucleosomes determines glomerular basement membrane binding in vivo. Eur J Immunol 27:1564–1569PubMedGoogle Scholar
  132. 132.
    Van der Vlag J, Berden JH (2011) Lupus nephritis: role of antinucleosome autoantibodies. Semin Nephrol 31:376–389PubMedGoogle Scholar
  133. 133.
    Van Ghelue M, Moens U, Bendiksen S et al (2003) Autoimmunity to nucleosomes related to viral infection: a focus on hapten-carrier complex formation. J Autoimmun 20:171–182Google Scholar
  134. 134.
    Voll RE, Roth EA, Girkontaite I et al (1997) Histone-specific Th0 and Th1 clones derived from systemic lupus erythematosus patients induce double-stranded DNA antibody production. Arthritis Rheum 40:2162–2171PubMedGoogle Scholar
  135. 135.
    Weening JJ, D'agati VD, Schwartz MM et al (2004) The classification of glomerulonephritis in systemic lupus erythematosus revisited. Kidney Int 65:521–530PubMedGoogle Scholar
  136. 136.
    Westhoff CM, Whittier A, Kathol S et al (1997) DNA-binding antibodies from viable motheaten mutant mice: implications for B cell tolerance. J Immunol 159:3024–3033PubMedGoogle Scholar
  137. 137.
    Widom J (1992) A relationship between the helical twist of DNA and the ordered positioning of nucleosomes in all eukaryotic cells. Proc Natl Acad Sci U S A 89:1095–1099PubMedCentralPubMedGoogle Scholar
  138. 138.
    Williams RC Jr, Malone C, Blood B et al (1999) Anti-DNA and anti-nucleosome antibody affinity—a mirror image of lupus nephritis? J Rheumatol 26:331–346PubMedGoogle Scholar
  139. 139.
    Winfield JB, Faiferman I, Koffler D (1977) Avidity of anti-DNA antibodies in serum and IgG glomerular eluates from patients with systemic lupus erythematosus. Association of high avidity antinative DNA antibody with glomerulonephritis. J Clin Invest 59:90–96PubMedCentralPubMedGoogle Scholar
  140. 140.
    Wu ZQ, Drayton D, Pisetsky DS (1997) Specificity and immunochemical properties of antibodies to bacterial DNA in sera of normal human subjects and patients with systemic lupus erythematosus (SLE). Clin Exp Immunol 109:27–31PubMedCentralPubMedGoogle Scholar
  141. 141.
    Xie C, Liang Z, Chang S et al (2003) Use of a novel elution regimen reveals the dominance of polyreactive antinuclear autoantibodies in lupus kidneys. Arthritis Rheum 48:2343–2352PubMedGoogle Scholar
  142. 142.
    Zykova SN, Seredkina N, Benjaminsen J et al (2008) Reduced fragmentation of apoptotic chromatin is associated with nephritis in lupus-prone (NZB x NZW)F(1) mice. Arthritis Rheum 58:813–825PubMedGoogle Scholar
  143. 143.
    Zykova SN, Tveita AA, Rekvig OP (2010) Renal Dnase1 enzyme activity and protein expression is selectively shut down in murine and human membranoproliferative lupus nephritis. PLoS One 5(8):e12096Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health SciencesUniversity of TromsøTromsøNorway
  2. 2.Department of Nephrology (480)Radboud University Medical CentreNijmegenThe Netherlands

Personalised recommendations