Advertisement

Seminars in Immunopathology

, Volume 36, Issue 2, pp 253–259 | Cite as

Matricellular protein CCN1/CYR61: a new player in inflammation and leukocyte trafficking

  • Yalin Emre
  • Beat A Imhof
Review

Abstract

Cystein-rich protein 61 (CYR61/CCN1) is a component of the extracellular matrix, which is produced and secreted by several cell types including endothelial cells, fibroblasts and smooth muscle cells. CCN1 has been implicated in leukocyte migration and the inflammatory process, but it is also involved in cardiovascular development and carcinogenesis. It exerts its functions through binding to multiple integrins present in many different cell types. This multiplicity in function is now known to contribute to the diverse array of cellular processes it can regulate. The expression of CCN1 is tightly regulated by cytokines and growth factors. However, CCN1 can directly modulate cell adhesion and migratory processes whilst simultaneously regulating the production of other cytokines and chemokines through paracrine and autocrine feedback loops. This complex functionality of CCN1 has highlighted the pivotal role this molecule can play in regulating the immunosurveillance process. Furthermore, CCN1 has now emerged as an important partner when targeting components of the infectious or chronic inflammatory disease processes such as atherosclerosis or rheumatoid arthritis. This review will focus on CYR61/CCN1 and its ability to control the migration of leukocytes, the production of cytokines and cell proliferation or senescence at the site of inflammation.

Keywords

CCN1 CYR61 Extracellular matrix Leukocyte migration Inflammation 

Abbreviations

CCN1/CYR61

Cysteine-rich protein 61

ECM

Extracellular matrix

FLS

Fibroblast-like synoviocytes

LPA

Lysophosphatidic acid

MMP

Metalloproteinase

RA

Rheumatoid arthritis

VSMC

Vascular smooth muscle cells

Notes

Acknowledgments

This work was supported by EMBO and Fondation Machaon (to Y.E.) and SNSF and Oncosuisse (31003AB_135701 and KFS 2914-02-2012 to B.A.I.).

Conflict of interest

The authors declare that they have no competing financial interests.

References

  1. 1.
    Sorokin L (2010) The impact of the extracellular matrix on inflammation. Nat Rev Immunol 10:712–723PubMedCrossRefGoogle Scholar
  2. 2.
    Verollet C, Charriere GM, Labrousse A, Cougoule C, Le Cabec V et al (2011) Extracellular proteolysis in macrophage migration: losing grip for a breakthrough. Eur J Immunol 41:2805–2813PubMedCrossRefGoogle Scholar
  3. 3.
    Weathington NM, van Houwelingen AH, Noerager BD, Jackson PL, Kraneveld AD et al (2006) A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nat Med 12:317–323PubMedCrossRefGoogle Scholar
  4. 4.
    Jun JI, Lau LF (2011) Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 10:945–963PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Lau LF (2011) CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci 68:3149–3163PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Lau LF, Nathans D (1987) Expression of a set of growth-related immediate early genes in BALB/c 3 T3 cells: coordinate regulation with c-fos or c-myc. Proc Natl Acad Sci U S A 84:1182–1186PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Kular L, Pakradouni J, Kitabgi P, Laurent M, Martinerie C (2011) The CCN family: a new class of inflammation modulators? Biochimie 93:377–388PubMedCrossRefGoogle Scholar
  8. 8.
    Lobel M, Bauer S, Meisel C, Eisenreich A, Kudernatsch R et al (2012) CCN1: a novel inflammation-regulated biphasic immune cell migration modulator. Cell Mol Life Sci 69:3101–3113PubMedCrossRefGoogle Scholar
  9. 9.
    Emre Y, Irla M, Dunand-Sauthier I, Ballet R, Meguenani M et al (2013) Thymic epithelial cell expansion through matricellular protein CYR61 boosts progenitor homing and T-cell output. Nat Commun 4:2842PubMedCrossRefGoogle Scholar
  10. 10.
    Mo FE, Muntean AG, Chen CC, Stolz DB, Watkins SC et al (2002) CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol 22:8709–8720PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Kireeva ML, Mo FE, Yang GP, Lau LF (1996) Cyr61, a product of a growth factor-inducible immediate-early gene, promotes cell proliferation, migration, and adhesion. Mol Cell Biol 16:1326–1334PubMedCentralPubMedGoogle Scholar
  12. 12.
    Babic AM, Kireeva ML, Kolesnikova TV, Lau LF (1998) CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci U S A 95:6355–6360PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Zhang Q, Wu J, Cao Q, Xiao L, Wang L et al (2009) A critical role of Cyr61 in interleukin-17-dependent proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Rheum 60:3602–3612PubMedCrossRefGoogle Scholar
  14. 14.
    Haas CS, Creighton CJ, Pi X, Maine I, Koch AE et al (2006) Identification of genes modulated in rheumatoid arthritis using complementary DNA microarray analysis of lymphoblastoid B cell lines from disease-discordant monozygotic twins. Arthritis Rheum 54:2047–2060PubMedCrossRefGoogle Scholar
  15. 15.
    Moritani NH, Kubota S, Sugahara T, Takigawa M (2005) Comparable response of ccn1 with ccn2 genes upon arthritis: an in vitro evaluation with a human chondrocytic cell line stimulated by a set of cytokines. Cell Commun Signal 3:6PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kok SH, Hou KL, Hong CY, Wang JS, Liang PC et al (2011) Simvastatin inhibits cytokine-stimulated Cyr61 expression in osteoblastic cells: a therapeutic benefit for arthritis. Arthritis Rheum 63:1010–1020PubMedCrossRefGoogle Scholar
  17. 17.
    Kok SH, Lin LD, Hou KL, Hong CY, Chang CC et al (2013) Simvastatin inhibits cysteine-rich protein 61 expression in rheumatoid arthritis synovial fibroblasts through the regulation of sirtuin-1/FoxO3a signaling. Arthritis Rheum 65:639–649PubMedCrossRefGoogle Scholar
  18. 18.
    Lin J, Zhou Z, Huo R, Xiao L, Ouyang G et al (2012) Cyr61 induces IL-6 production by fibroblast-like synoviocytes promoting Th17 differentiation in rheumatoid arthritis. J Immunol 188:5776–5784PubMedCrossRefGoogle Scholar
  19. 19.
    Lin LD, Lin SK, Chao YL, Kok SH, Hong CY et al (2013) Simvastatin suppresses osteoblastic expression of Cyr61 and progression of apical periodontitis through enhancement of the transcription factor Forkhead/winged helix box protein O3a. J Endod 39:619–625PubMedCrossRefGoogle Scholar
  20. 20.
    Bohn E, Muller S, Lauber J, Geffers R, Speer N et al (2004) Gene expression patterns of epithelial cells modulated by pathogenicity factors of Yersinia enterocolitica. Cell Microbiol 6:129–141PubMedCrossRefGoogle Scholar
  21. 21.
    Wiedmaier N, Muller S, Koberle M, Manncke B, Krejci J et al (2008) Bacteria induce CTGF and CYR61 expression in epithelial cells in a lysophosphatidic acid receptor-dependent manner. Int J Med Microbiol 298:231–243PubMedCrossRefGoogle Scholar
  22. 22.
    Bian Z, Peng Y, You Z, Wang Q, Miao Q et al (2013) CCN1 expression in hepatocytes contributes to macrophage infiltration in nonalcoholic fatty liver disease in mice. J Lipid Res 54:44–54PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Johannes G, Carter MS, Eisen MB, Brown PO, Sarnow P (1999) Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc Natl Acad Sci U S A 96:13118–13123PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Kim SM, Park JH, Chung SK, Kim JY, Hwang HY et al (2004) Coxsackievirus B3 infection induces cyr61 activation via JNK to mediate cell death. J Virol 78:13479–13488PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Kurozumi K, Hardcastle J, Thakur R, Shroll J, Nowicki M et al (2008) Oncolytic HSV-1 infection of tumors induces angiogenesis and upregulates CYR61. Mol Ther 16:1382–1391PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Haseley A, Boone S, Wojton J, Yu L, Yoo JY et al (2012) Extracellular matrix protein CCN1 limits oncolytic efficacy in glioma. Cancer Res 72:1353–1362PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Wittchen F, Suckau L, Witt H, Skurk C, Lassner D et al (2007) Genomic expression profiling of human inflammatory cardiomyopathy (DCMi) suggests novel therapeutic targets. J Mol Med (Berl) 85:257–271CrossRefGoogle Scholar
  28. 28.
    Hilfiker-Kleiner D, Kaminski K, Kaminska A, Fuchs M, Klein G et al (2004) Regulation of proangiogenic factor CCN1 in cardiac muscle: impact of ischemia, pressure overload, and neurohumoral activation. Circulation 109:2227–2233PubMedCrossRefGoogle Scholar
  29. 29.
    Hughes JM, Kuiper EJ, Klaassen I, Canning P, Stitt AW et al (2007) Advanced glycation end products cause increased CCN family and extracellular matrix gene expression in the diabetic rodent retina. Diabetologia 50:1089–1098PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Dean RA, Butler GS, Hamma-Kourbali Y, Delbe J, Brigstock DR et al (2007) Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis. Mol Cell Biol 27:8454–8465PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Butler GS, Dean RA, Tam EM, Overall CM (2008) Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: dynamics of membrane type 1 matrix metalloproteinase-mediated membrane protein shedding. Mol Cell Biol 28:4896–4914PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Choi J, Lin A, Shrier E, Lau LF, Grant MB et al (2013) Degradome products of the matricellular protein CCN1 as modulators of pathological angiogenesis in the retina. J Biol Chem 288:23075–23089PubMedCrossRefGoogle Scholar
  33. 33.
    Grzeszkiewicz TM, Lindner V, Chen N, Lam SC, Lau LF (2002) The angiogenic factor cysteine-rich 61 (CYR61, CCN1) supports vascular smooth muscle cell adhesion and stimulates chemotaxis through integrin alpha (6) beta (1) and cell surface heparan sulfate proteoglycans. Endocrinology 143:1441–1450PubMedGoogle Scholar
  34. 34.
    Schober JM, Chen N, Grzeszkiewicz TM, Jovanovic I, Emeson EE et al (2002) Identification of integrin alpha (M) beta (2) as an adhesion receptor on peripheral blood monocytes for Cyr61 (CCN1) and connective tissue growth factor (CCN2): immediate-early gene products expressed in atherosclerotic lesions. Blood 99:4457–4465PubMedCrossRefGoogle Scholar
  35. 35.
    Hilfiker A, Hilfiker-Kleiner D, Fuchs M, Kaminski K, Lichtenberg A et al (2002) Expression of CYR61, an angiogenic immediate early gene, in arteriosclerosis and its regulation by angiotensin II. Circulation 106:254–260PubMedCrossRefGoogle Scholar
  36. 36.
    Sigala F, Georgopoulos S, Papalambros E, Chasiotis D, Vourliotakis G et al (2006) Heregulin, cysteine rich-61 and matrix metalloproteinase 9 expression in human carotid atherosclerotic plaques: relationship with clinical data. Eur J Vasc Endovasc Surg 32:238–245PubMedCrossRefGoogle Scholar
  37. 37.
    Schober JM, Lau LF, Ugarova TP, Lam SC (2003) Identification of a novel integrin alphaMbeta2 binding site in CCN1 (CYR61), a matricellular protein expressed in healing wounds and atherosclerotic lesions. J Biol Chem 278:25808–25815PubMedCrossRefGoogle Scholar
  38. 38.
    Koon HW, Zhao D, Xu H, Bowe C, Moss A et al (2008) Substance P-mediated expression of the pro-angiogenic factor CCN1 modulates the course of colitis. Am J Pathol 173:400–410PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Rother M, Krohn S, Kania G, Vanhoutte D, Eisenreich A et al (2010) Matricellular signaling molecule CCN1 attenuates experimental autoimmune myocarditis by acting as a novel immune cell migration modulator. Circulation 122:2688–2698PubMedCrossRefGoogle Scholar
  40. 40.
    Grote K, Salguero G, Ballmaier M, Dangers M, Drexler H et al (2007) The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells: potential role in angiogenesis and endothelial regeneration. Blood 110:877–885PubMedCrossRefGoogle Scholar
  41. 41.
    Jedsadayanmata A, Chen CC, Kireeva ML, Lau LF, Lam SC (1999) Activation-dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is mediated through integrin alpha (IIb) beta (3). J Biol Chem 274:24321–24327PubMedCrossRefGoogle Scholar
  42. 42.
    Bai T, Chen CC, Lau LF (2010) Matricellular protein CCN1 activates a proinflammatory genetic program in murine macrophages. J Immunol 184:3223–3232PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Yakubenko VP, Yadav SP, Ugarova TP (2006) Integrin alphaDbeta2, an adhesion receptor up-regulated on macrophage foam cells, exhibits multiligand-binding properties. Blood 107:1643–1650PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Chen CC, Young JL, Monzon RI, Chen N, Todorovic V et al (2007) Cytotoxicity of TNFalpha is regulated by integrin-mediated matrix signaling. EMBO J 26:1257–1267PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Jun JI, Lau LF (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12:676–685PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Wu DD, Zhang F, Hao F, Chun J, Xu X, et al. (2013) Matricellular protein Cyr61 bridges lysophosphatidic acid and integrin pathways leading to cell migration. J Biol Chem.Google Scholar
  47. 47.
    Matsumae H, Yoshida Y, Ono K, Togi K, Inoue K et al (2008) CCN1 knockdown suppresses neointimal hyperplasia in a rat artery balloon injury model. Arterioscler Thromb Vasc Biol 28:1077–1083PubMedCrossRefGoogle Scholar
  48. 48.
    You JJ, Yang CH, Yang CM, Chen MS (2014) Cyr61 induces the expression of monocyte chemoattractant protein-1 via the integrin alphanubeta3, FAK, PI3K/Akt, and NF-kappaB pathways in retinal vascular endothelial cells. Cell Signal 26:133–140PubMedCrossRefGoogle Scholar
  49. 49.
    Chen CC, Mo FE, Lau LF (2001) The angiogenic factor Cyr61 activates a genetic program for wound healing in human skin fibroblasts. J Biol Chem 276:47329–47337PubMedCrossRefGoogle Scholar
  50. 50.
    Lai CF, Chen YM, Chiang WC, Lin SL, Kuo ML et al (2013) Cysteine-rich protein 61 plays a proinflammatory role in obstructive kidney fibrosis. PLoS One 8:e56481PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Chen CC, Chen N, Lau LF (2001) The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem 276:10443–10452PubMedCrossRefGoogle Scholar
  52. 52.
    Lee HY, Chung JW, Youn SW, Kim JY, Park KW et al (2007) Forkhead transcription factor FOXO3a is a negative regulator of angiogenic immediate early gene CYR61, leading to inhibition of vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 100:372–380PubMedCrossRefGoogle Scholar
  53. 53.
    Leu SJ, Lam SC, Lau LF (2002) Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells. J Biol Chem 277:46248–46255PubMedCrossRefGoogle Scholar
  54. 54.
    Athanasopoulos AN, Schneider D, Keiper T, Alt V, Pendurthi UR et al (2007) Vascular endothelial growth factor (VEGF)-induced up-regulation of CCN1 in osteoblasts mediates proangiogenic activities in endothelial cells and promotes fracture healing. J Biol Chem 282:26746–26753PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Nguyen N, Kuliopulos A, Graham RA, Covic L (2006) Tumor-derived Cyr61(CCN1) promotes stromal matrix metalloproteinase-1 production and protease-activated receptor 1-dependent migration of breast cancer cells. Cancer Res 66:2658–2665PubMedCrossRefGoogle Scholar
  56. 56.
    Jim Leu SJ, Sung JS, Huang ML, Chen MY, Tsai TW (2013) A novel anti-CCN1 monoclonal antibody suppresses Rac-dependent cytoskeletal reorganization and migratory activities in breast cancer cells. Biochem Biophys Res Commun 434:885–891PubMedCrossRefGoogle Scholar
  57. 57.
    Manley NR, Richie ER, Blackburn CC, Condie BG, Sage J (2011) Structure and function of the thymic microenvironment. Front Biosci (Landmark Ed) 16:2461–2477CrossRefGoogle Scholar
  58. 58.
    Kyewski B, Klein L (2006) A central role for central tolerance. Annu Rev Immunol 24:571–606PubMedCrossRefGoogle Scholar
  59. 59.
    Du J, Klein JD, Hassounah F, Zhang J, Zhang C, et al. (2013) Aging increases CCN1 expression leading to muscle senescence. Am J Physiol Cell Physiol.Google Scholar
  60. 60.
    Kim KH, Chen CC, Monzon RI, Lau LF (2013) Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol Cell Biol 33:2078–2090PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Crockett JC, Schutze N, Tosh D, Jatzke S, Duthie A et al (2007) The matricellular protein CYR61 inhibits osteoclastogenesis by a mechanism independent of alphavbeta3 and alphavbeta5. Endocrinology 148:5761–5768PubMedCrossRefGoogle Scholar
  62. 62.
    Su JL, Chiou J, Tang CH, Zhao M, Tsai CH et al (2010) CYR61 regulates BMP-2-dependent osteoblast differentiation through the {alpha} v {beta} 3 integrin/integrin-linked kinase/ERK pathway. J Biol Chem 285:31325–31336PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Schutze N, Schenk R, Fiedler J, Mattes T, Jakob F et al (2007) CYR61/CCN1 and WISP3/CCN6 are chemoattractive ligands for human multipotent mesenchymal stroma cells. BMC Cell Biol 8:45PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Pathology and Immunology, Centre Médical UniversitaireUniversity of GenevaGenève 4Switzerland

Personalised recommendations