Seminars in Immunopathology

, Volume 36, Issue 2, pp 227–251 | Cite as

The multiple faces of leukocyte interstitial migration

  • Tim LämmermannEmail author
  • Ronald N. GermainEmail author


Spatiotemporal control of leukocyte dynamics within tissues is critical for successful innate and adaptive immune responses. Homeostatic trafficking and coordinated infiltration into and within sites of inflammation and infection rely on signaling in response to extracellular cues that in turn controls a variety of intracellular protein networks regulating leukocyte motility, migration, chemotaxis, positioning, and cell–cell interaction. In contrast to mesenchymal cells, leukocytes migrate in an amoeboid fashion by rapid cycles of actin polymerization and actomyosin contraction, and their migration in tissues is generally referred to as low adhesive and nonproteolytic. The interplay of actin network expansion, contraction, and adhesion shapes the exact mode of amoeboid migration, and in this review, we explore how leukocyte subsets potentially harness the same basic biomechanical mechanisms in a cell-type-specific manner. Most of our detailed understanding of these processes derives from in vitro migration studies in three-dimensional gels and confined spaces that mimic geometrical aspects of physiological tissues. We summarize these in vitro results and then critically compare them to data from intravital imaging of leukocyte interstitial migration in mouse tissues. We outline the technical challenges of obtaining conclusive mechanistic results from intravital studies, discuss leukocyte migration strategies in vivo, and present examples of mode switching during physiological interstitial migration. These findings are also placed in the context of leukocyte migration defects in primary immunodeficiencies. This overview of both in vitro and in vivo studies highlights recent progress in understanding the molecular and biophysical mechanisms that shape robust leukocyte migration responses in physiologically complex and heterogeneous environments.


Leukocyte Interstitial migration Plasticity Cytoskeleton Tissue architecture Imaging 



We thank Dr. Angelika Rambold for carefully preparing figure illustrations and critically reviewing the manuscript. This work was supported by the Intramural Research Program of NIAID, NIH. T.L. was supported by a long-term fellowship of the Human Frontier Science Program Organization.


  1. 1.
    von Andrian UH, Mempel TR (2003) Homing and cellular traffic in lymph nodes. Nat Rev Immunol 3(11):867–878. doi: 10.1038/nri1222 Google Scholar
  2. 2.
    Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6(12):1182–1190. doi: 10.1038/ni1275 PubMedGoogle Scholar
  3. 3.
    Friedl P, Weigelin B (2008) Interstitial leukocyte migration and immune function. Nat Immunol 9(9):960–969. doi: 10.1038/ni.f.212 PubMedGoogle Scholar
  4. 4.
    Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188(1):11–19. doi: 10.1083/jcb.200909003 PubMedCentralPubMedGoogle Scholar
  5. 5.
    Lämmermann T, Sixt M (2009) Mechanical modes of ‘amoeboid’ cell migration. Curr Opin Cell Biol 21(5):636–644. doi: 10.1016/ PubMedGoogle Scholar
  6. 6.
    Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7(9):678–689. doi: 10.1038/nri2156 PubMedGoogle Scholar
  7. 7.
    Hickey MJ, Kubes P (2009) Intravascular immunity: the host-pathogen encounter in blood vessels. Nat Rev Immunol 9(5):364–375. doi: 10.1038/nri2532 PubMedGoogle Scholar
  8. 8.
    Lämmermann T, Afonso PV, Angermann BR, Wang JM, Kastenmuller W, Parent CA, Germain RN (2013) Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498(7454):371–375. doi: 10.1038/nature12175 PubMedGoogle Scholar
  9. 9.
    Germain RN, Robey EA, Cahalan MD (2012) A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336(6089):1676–1681. doi: 10.1126/science.1221063 PubMedCentralPubMedGoogle Scholar
  10. 10.
    Madsen CD, Sahai E (2010) Cancer dissemination—lessons from leukocytes. Dev Cell 19(1):13–26. doi: 10.1016/j.devcel.2010.06.013 PubMedGoogle Scholar
  11. 11.
    Tozluoglu M, Tournier AL, Jenkins RP, Hooper S, Bates PA, Sahai E (2013) Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat Cell Biol 15(7):751–762. doi: 10.1038/ncb2775 PubMedGoogle Scholar
  12. 12.
    Yoo SK, Deng Q, Cavnar PJ, Wu YI, Hahn KM, Huttenlocher A (2010) Differential regulation of protrusion and polarity by PI3K during neutrophil motility in live zebrafish. Dev Cell 18(2):226–236. doi: 10.1016/j.devcel.2009.11.015 PubMedCentralPubMedGoogle Scholar
  13. 13.
    Shelef MA, Tauzin S, Huttenlocher A (2013) Neutrophil migration: moving from zebrafish models to human autoimmunity. Immunol Rev 256(1):269–281. doi: 10.1111/imr.12124 PubMedGoogle Scholar
  14. 14.
    Peri F (2010) Breaking ranks: how leukocytes react to developmental cues and tissue injury. Curr Opin Genet Dev 20(4):416–419. doi: 10.1016/j.gde.2010.05.002 PubMedGoogle Scholar
  15. 15.
    Evans IR, Wood W (2011) Drosophila embryonic hemocytes. Curr Biol CB 21(5):R173–R174. doi: 10.1016/j.cub.2011.01.061 Google Scholar
  16. 16.
    Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928. doi: 10.1146/annurev.immunol.22.012703.104543 PubMedGoogle Scholar
  17. 17.
    Murphy PM (1994) The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol 12:593–633. doi: 10.1146/annurev.iy.12.040194.003113 PubMedGoogle Scholar
  18. 18.
    Lin F, Baldessari F, Gyenge CC, Sato T, Chambers RD, Santiago JG, Butcher EC (2008) Lymphocyte electrotaxis in vitro and in vivo. J Immunol 181(4):2465–2471PubMedCentralPubMedGoogle Scholar
  19. 19.
    Yoo SK, Starnes TW, Deng Q, Huttenlocher A (2011) Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480(7375):109–112. doi: 10.1038/nature10632 PubMedCentralPubMedGoogle Scholar
  20. 20.
    Wilson K, Lewalle A, Fritzsche M, Thorogate R, Duke T, Charras G (2013) Mechanisms of leading edge protrusion in interstitial migration. Nat Commun 4:2896. doi: 10.1038/ncomms3896 PubMedCentralPubMedGoogle Scholar
  21. 21.
    Xu W, Wang P, Petri B, Zhang Y, Tang W, Sun L, Kress H, Mann T, Shi Y, Kubes P, Wu D (2010) Integrin-induced PIP5K1C kinase polarization regulates neutrophil polarization, directionality, and in vivo infiltration. Immunity 33(3):340–350. doi: 10.1016/j.immuni.2010.08.015 PubMedCentralPubMedGoogle Scholar
  22. 22.
    Sanchez-Madrid F, del Pozo MA (1999) Leukocyte polarization in cell migration and immune interactions. EMBO J 18(3):501–511. doi: 10.1093/emboj/18.3.501 PubMedCentralPubMedGoogle Scholar
  23. 23.
    Germena G, Hirsch E (2013) PI3Ks and small GTPases in neutrophil migration: two sides of the same coin. Mol Immunol 55(1):83–86. doi: 10.1016/j.molimm.2012.10.004 PubMedGoogle Scholar
  24. 24.
    Heit B, Liu L, Colarusso P, Puri KD, Kubes P (2008) PI3K accelerates, but is not required for, neutrophil chemotaxis to fMLP. J Cell Sci 121(Pt 2):205–214. doi: 10.1242/jcs.020412 PubMedGoogle Scholar
  25. 25.
    Tybulewicz VL, Henderson RB (2009) Rho family GTPases and their regulators in lymphocytes. Nat Rev Immunol 9(9):630–644. doi: 10.1038/nri2606 PubMedGoogle Scholar
  26. 26.
    Vicente-Manzanares M, Sanchez-Madrid F (2004) Role of the cytoskeleton during leukocyte responses. Nat Rev Immunol 4(2):110–122. doi: 10.1038/nri1268 PubMedGoogle Scholar
  27. 27.
    Tooley AJ, Gilden J, Jacobelli J, Beemiller P, Trimble WS, Kinoshita M, Krummel MF (2009) Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nat Cell Biol 11(1):17–26. doi: 10.1038/ncb1808 PubMedCentralPubMedGoogle Scholar
  28. 28.
    Nieminen M, Henttinen T, Merinen M, Marttila-Ichihara F, Eriksson JE, Jalkanen S (2006) Vimentin function in lymphocyte adhesion and transcellular migration. Nat Cell Biol 8(2):156–162. doi: 10.1038/ncb1355 PubMedGoogle Scholar
  29. 29.
    Niggli V (2003) Microtubule-disruption-induced and chemotactic-peptide-induced migration of human neutrophils: implications for differential sets of signalling pathways. J Cell Sci 116(Pt 5):813–822PubMedGoogle Scholar
  30. 30.
    Renkawitz J, Sixt M (2010) Mechanisms of force generation and force transmission during interstitial leukocyte migration. EMBO Rep 11(10):744–750. doi: 10.1038/embor.2010.147 PubMedCentralPubMedGoogle Scholar
  31. 31.
    Hogg N, Patzak I, Willenbrock F (2011) The insider’s guide to leukocyte integrin signalling and function. Nat Rev Immunol 11(6):416–426. doi: 10.1038/nri2986 PubMedGoogle Scholar
  32. 32.
    Abram CL, Lowell CA (2009) The ins and outs of leukocyte integrin signaling. Annu Rev Immunol 27:339–362. doi: 10.1146/annurev.immunol.021908.132554 PubMedCentralPubMedGoogle Scholar
  33. 33.
    Lämmermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R, Hirsch K, Keller M, Forster R, Critchley DR, Fassler R, Sixt M (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453(7191):51–55. doi: 10.1038/nature06887 PubMedGoogle Scholar
  34. 34.
    Brown AF (1982) Neutrophil granulocytes: adhesion and locomotion on collagen substrata and in collagen matrices. J Cell Sci 58:455–467PubMedGoogle Scholar
  35. 35.
    Haston WS, Shields JM, Wilkinson PC (1982) Lymphocyte locomotion and attachment on two-dimensional surfaces and in three-dimensional matrices. J Cell Biol 92(3):747–752PubMedCentralPubMedGoogle Scholar
  36. 36.
    Friedl P, Entschladen F, Conrad C, Niggemann B, Zanker KS (1998) CD4+ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize beta1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion. Eur J Immunol 28(8):2331–2343. doi: 10.1002/(SICI)1521-4141(199808)28:08<2331::AID-IMMU2331>3.0.CO;2-C PubMedGoogle Scholar
  37. 37.
    Woolf E, Grigorova I, Sagiv A, Grabovsky V, Feigelson SW, Shulman Z, Hartmann T, Sixt M, Cyster JG, Alon R (2007) Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nat Immunol 8(10):1076–1085. doi: 10.1038/ni1499 PubMedGoogle Scholar
  38. 38.
    Barry NP, Bretscher MS (2010) Dictyostelium amoebae and neutrophils can swim. Proc Natl Acad Sci U S A 107(25):11376–11380. doi: 10.1073/pnas.1006327107 PubMedCentralPubMedGoogle Scholar
  39. 39.
    Malawista SE, de Boisfleury Chevance A (1997) Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes (PMN) in the presence of EDTA: PMN in close quarters require neither leukocyte integrins nor external divalent cations. Proc Natl Acad Sci U S A 94(21):11577–11582PubMedCentralPubMedGoogle Scholar
  40. 40.
    Faure-Andre G, Vargas P, Yuseff MI, Heuze M, Diaz J, Lankar D, Steri V, Manry J, Hugues S, Vascotto F, Boulanger J, Raposo G, Bono MR, Rosemblatt M, Piel M, Lennon-Dumenil AM (2008) Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain. Science 322(5908):1705–1710. doi: 10.1126/science.1159894 PubMedGoogle Scholar
  41. 41.
    Fernandez MI, Heuze ML, Martinez-Cingolani C, Volpe E, Donnadieu MH, Piel M, Homey B, Lennon-Dumenil AM, Soumelis V (2011) The human cytokine TSLP triggers a cell-autonomous dendritic cell migration in confined environments. Blood 118(14):3862–3869. doi: 10.1182/blood-2010-12-323089 PubMedGoogle Scholar
  42. 42.
    Jacobelli J, Friedman RS, Conti MA, Lennon-Dumenil AM, Piel M, Sorensen CM, Adelstein RS, Krummel MF (2010) Confinement-optimized three-dimensional T cell amoeboid motility is modulated via myosin IIA-regulated adhesions. Nat Immunol 11(10):953–961. doi: 10.1038/ni.1936 PubMedCentralPubMedGoogle Scholar
  43. 43.
    Hung WC, Chen SH, Paul CD, Stroka KM, Lo YC, Yang JT, Konstantopoulos K (2013) Distinct signaling mechanisms regulate migration in unconfined versus confined spaces. J Cell Biol 202(5):807–824. doi: 10.1083/jcb.201302132 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Ambravaneswaran V, Wong IY, Aranyosi AJ, Toner M, Irimia D (2010) Directional decisions during neutrophil chemotaxis inside bifurcating channels. Integr Biol Quant Biosci Nano Macro 2(11–12):639–647. doi: 10.1039/c0ib00011f Google Scholar
  45. 45.
    Heuze ML, Collin O, Terriac E, Lennon-Dumenil AM, Piel M (2011) Cell migration in confinement: a micro-channel-based assay. Methods Mol Biol 769:415–434. doi: 10.1007/978-1-61779-207-6_28 PubMedGoogle Scholar
  46. 46.
    Irimia D, Charras G, Agrawal N, Mitchison T, Toner M (2007) Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip 7(12):1783–1790. doi: 10.1039/b710524j PubMedCentralPubMedGoogle Scholar
  47. 47.
    Abhyankar VV, Toepke MW, Cortesio CL, Lokuta MA, Huttenlocher A, Beebe DJ (2008) A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. Lab Chip 8(9):1507–1515. doi: 10.1039/b803533d PubMedCentralPubMedGoogle Scholar
  48. 48.
    Sackmann EK, Berthier E, Young EW, Shelef MA, Wernimont SA, Huttenlocher A, Beebe DJ (2012) Microfluidic kit-on-a-lid: a versatile platform for neutrophil chemotaxis assays. Blood 120(14):e45–e53. doi: 10.1182/blood-2012-03-416453 PubMedCentralPubMedGoogle Scholar
  49. 49.
    Heuze ML, Vargas P, Chabaud M, Le Berre M, Liu YJ, Collin O, Solanes P, Voituriez R, Piel M, Lennon-Dumenil AM (2013) Migration of dendritic cells: physical principles, molecular mechanisms, and functional implications. Immunol Rev 256(1):240–254. doi: 10.1111/imr.12108 PubMedGoogle Scholar
  50. 50.
    Prentice-Mott HV, Chang CH, Mahadevan L, Mitchison TJ, Irimia D, Shah JV (2013) Biased migration of confined neutrophil-like cells in asymmetric hydraulic environments. Proc Natl Acad Sci U S A 110(52):21006–21011. doi: 10.1073/pnas.1317441110 PubMedGoogle Scholar
  51. 51.
    Le Berre M, Liu YJ, Hu J, Maiuri P, Benichou O, Voituriez R, Chen Y, Piel M (2013) Geometric friction directs cell migration. Phys Rev Lett 111(19):198101PubMedGoogle Scholar
  52. 52.
    Kwon KW, Park H, Song KH, Choi JC, Ahn H, Park MJ, Suh KY, Doh J (2012) Nanotopography-guided migration of T cells. J Immunol 189(5):2266–2273. doi: 10.4049/jimmunol.1102273 PubMedGoogle Scholar
  53. 53.
    Sixt M, Lämmermann T (2011) In vitro analysis of chemotactic leukocyte migration in 3D environments. Methods Mol Biol 769:149–165. doi: 10.1007/978-1-61779-207-6_11 PubMedGoogle Scholar
  54. 54.
    Reichardt P, Gunzer F, Gunzer M (2007) Analyzing the physicodynamics of immune cells in a three-dimensional collagen matrix. Methods Mol Biol 380:253–269. doi: 10.1007/978-1-59745-395-0_15 PubMedGoogle Scholar
  55. 55.
    Weigelin B, Friedl P (2010) A three-dimensional organotypic assay to measure target cell killing by cytotoxic T lymphocytes. Biochem Pharmacol 80(12):2087–2091. doi: 10.1016/j.bcp.2010.09.004 PubMedGoogle Scholar
  56. 56.
    Friedl P, Brocker EB (2004) Reconstructing leukocyte migration in 3D extracellular matrix by time-lapse videomicroscopy and computer-assisted tracking. Methods Mol Biol 239:77–90PubMedGoogle Scholar
  57. 57.
    Van Goethem E, Poincloux R, Gauffre F, Maridonneau-Parini I, Le Cabec V (2010) Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures. J Immunol 184(2):1049–1061. doi: 10.4049/jimmunol.0902223 PubMedGoogle Scholar
  58. 58.
    Wolf K, Muller R, Borgmann S, Brocker EB, Friedl P (2003) Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102(9):3262–3269. doi: 10.1182/blood-2002-12-3791 PubMedGoogle Scholar
  59. 59.
    Wolf K, Alexander S, Schacht V, Coussens LM, von Andrian UH, van Rheenen J, Deryugina E, Friedl P (2009) Collagen-based cell migration models in vitro and in vivo. Sem Cell Dev Biol 20(8):931–941. doi: 10.1016/j.semcdb.2009.08.005 Google Scholar
  60. 60.
    Raub CB, Suresh V, Krasieva T, Lyubovitsky J, Mih JD, Putnam AJ, Tromberg BJ, George SC (2007) Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophys J 92(6):2212–2222. doi: 10.1529/biophysj.106.097998 PubMedCentralPubMedGoogle Scholar
  61. 61.
    Raub CB, Unruh J, Suresh V, Krasieva T, Lindmo T, Gratton E, Tromberg BJ, George SC (2008) Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties. Biophys J 94(6):2361–2373. doi: 10.1529/biophysj.107.120006 PubMedCentralPubMedGoogle Scholar
  62. 62.
    Gobeaux F, Mosser G, Anglo A, Panine P, Davidson P, Giraud-Guille MM, Belamie E (2008) Fibrillogenesis in dense collagen solutions: a physicochemical study. J Mol Biol 376(5):1509–1522. doi: 10.1016/j.jmb.2007.12.047 PubMedGoogle Scholar
  63. 63.
    Doyle AD, Petrie RJ, Kutys ML, Yamada KM (2013) Dimensions in cell migration. Curr Opin Cell Biol 25(5):642–649. doi: 10.1016/ PubMedGoogle Scholar
  64. 64.
    Klemke M, Kramer E, Konstandin MH, Wabnitz GH, Samstag Y (2010) An MEK-cofilin signalling module controls migration of human T cells in 3D but not 2D environments. EMBO J 29(17):2915–2929. doi: 10.1038/emboj.2010.153 PubMedCentralPubMedGoogle Scholar
  65. 65.
    Quast T, Tappertzhofen B, Schild C, Grell J, Czeloth N, Forster R, Alon R, Fraemohs L, Dreck K, Weber C, Lämmermann T, Sixt M, Kolanus W (2009) Cytohesin-1 controls the activation of RhoA and modulates integrin-dependent adhesion and migration of dendritic cells. Blood 113(23):5801–5810. doi: 10.1182/blood-2008-08-176123 PubMedGoogle Scholar
  66. 66.
    Wolf K, Te Lindert M, Krause M, Alexander S, Te Riet J, Willis AL, Hoffman RM, Figdor CG, Weiss SJ, Friedl P (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol 201(7):1069–1084. doi: 10.1083/jcb.201210152 PubMedCentralPubMedGoogle Scholar
  67. 67.
    Le Berre M, Aubertin J, Piel M (2012) Fine control of nuclear confinement identifies a threshold deformation leading to lamina rupture and induction of specific genes. Integr Biol Quant Biosci Nano Macro 4(11):1406–1414. doi: 10.1039/c2ib20056b Google Scholar
  68. 68.
    Lämmermann T, Renkawitz J, Wu X, Hirsch K, Brakebusch C, Sixt M (2009) Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration. Blood 113(23):5703–5710. doi: 10.1182/blood-2008-11-191882 PubMedGoogle Scholar
  69. 69.
    Harada Y, Tanaka Y, Terasawa M, Pieczyk M, Habiro K, Katakai T, Hanawa-Suetsugu K, Kukimoto-Niino M, Nishizaki T, Shirouzu M, Duan X, Uruno T, Nishikimi A, Sanematsu F, Yokoyama S, Stein JV, Kinashi T, Fukui Y (2012) DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood 119(19):4451–4461. doi: 10.1182/blood-2012-01-407098 PubMedCentralPubMedGoogle Scholar
  70. 70.
    Cougoule C, Van Goethem E, Le Cabec V, Lafouresse F, Dupre L, Mehraj V, Mege JL, Lastrucci C, Maridonneau-Parini I (2012) Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments. Eur J Cell Biol 91(11–12):938–949. doi: 10.1016/j.ejcb.2012.07.002 PubMedGoogle Scholar
  71. 71.
    Jacobelli J, Bennett FC, Pandurangi P, Tooley AJ, Krummel MF (2009) Myosin-IIA and ICAM-1 regulate the interchange between two distinct modes of T cell migration. J Immunol 182(4):2041–2050. doi: 10.4049/jimmunol.0803267 PubMedGoogle Scholar
  72. 72.
    Renkawitz J, Schumann K, Weber M, Lammermann T, Pflicke H, Piel M, Polleux J, Spatz JP, Sixt M (2009) Adaptive force transmission in amoeboid cell migration. Nat Cell Biol 11(12):1438–1443. doi: 10.1038/ncb1992 PubMedGoogle Scholar
  73. 73.
    Junt T, Scandella E, Ludewig B (2008) Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nat Rev Immunol 8(10):764–775. doi: 10.1038/nri2414 PubMedGoogle Scholar
  74. 74.
    Randolph GJ, Angeli V, Swartz MA (2005) Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5(8):617–628. doi: 10.1038/nri1670 PubMedGoogle Scholar
  75. 75.
    Lodygin D, Odoardi F, Schlager C, Korner H, Kitz A, Nosov M, van den Brandt J, Reichardt HM, Haberl M, Flugel A (2013) A combination of fluorescent NFAT and H2B sensors uncovers dynamics of T cell activation in real time during CNS autoimmunity. Nat Med 19(6):784–790. doi: 10.1038/nm.3182 PubMedGoogle Scholar
  76. 76.
    Marangoni F, Murooka TT, Manzo T, Kim EY, Carrizosa E, Elpek NM, Mempel TR (2013) The transcription factor NFAT exhibits signal memory during serial T cell interactions with antigen-presenting cells. Immunity 38(2):237–249. doi: 10.1016/j.immuni.2012.09.012 PubMedCentralPubMedGoogle Scholar
  77. 77.
    Azar GA, Lemaitre F, Robey EA, Bousso P (2010) Subcellular dynamics of T cell immunological synapses and kinapses in lymph nodes. Proc Natl Acad Sci U S A 107(8):3675–3680. doi: 10.1073/pnas.0905901107 PubMedCentralPubMedGoogle Scholar
  78. 78.
    Garrod KR, Moreau HD, Garcia Z, Lemaitre F, Bouvier I, Albert ML, Bousso P (2012) Dissecting T cell contraction in vivo using a genetically encoded reporter of apoptosis. Cell Rep 2(5):1438–1447. doi: 10.1016/j.celrep.2012.10.015 PubMedGoogle Scholar
  79. 79.
    Mues M, Bartholomaus I, Thestrup T, Griesbeck O, Wekerle H, Kawakami N, Krishnamoorthy G (2013) Real-time in vivo analysis of T cell activation in the central nervous system using a genetically encoded calcium indicator. Nat Med 19(6):778–783. doi: 10.1038/nm.3180 PubMedGoogle Scholar
  80. 80.
    Tang J, van Panhuys N, Kastenmuller W, Germain RN (2013) The future of immunoimaging—deeper, bigger, more precise, and definitively more colorful. Eur J Immunol 43(6):1407–1412. doi: 10.1002/eji.201243119 PubMedGoogle Scholar
  81. 81.
    Huang JH, Cardenas-Navia LI, Caldwell CC, Plumb TJ, Radu CG, Rocha PN, Wilder T, Bromberg JS, Cronstein BN, Sitkovsky M, Dewhirst MW, Dustin ML (2007) Requirements for T lymphocyte migration in explanted lymph nodes. J Immunol 178(12):7747–7755PubMedGoogle Scholar
  82. 82.
    Hyun YM, Sumagin R, Sarangi PP, Lomakina E, Overstreet MG, Baker CM, Fowell DJ, Waugh RE, Sarelius IH, Kim M (2012) Uropod elongation is a common final step in leukocyte extravasation through inflamed vessels. J Exp Med 209(7):1349–1362. doi: 10.1084/jem.20111426 PubMedCentralPubMedGoogle Scholar
  83. 83.
    Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M, von Bruhl ML, Gartner F, Khandoga AG, Legate KR, Pless R, Hepper I, Lauber K, Walzog B, Massberg S (2013) Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat Immunol 14(1):41–51. doi: 10.1038/ni.2477 PubMedGoogle Scholar
  84. 84.
    Werr J, Johansson J, Eriksson EE, Hedqvist P, Ruoslahti E, Lindbom L (2000) Integrin alpha(2)beta(1) (VLA-2) is a principal receptor used by neutrophils for locomotion in extravascular tissue. Blood 95(5):1804–1809PubMedGoogle Scholar
  85. 85.
    Werr J, Xie X, Hedqvist P, Ruoslahti E, Lindbom L (1998) Beta1 integrins are critically involved in neutrophil locomotion in extravascular tissue in vivo. J Exp Med 187(12):2091–2096PubMedCentralPubMedGoogle Scholar
  86. 86.
    Lerchenberger M, Uhl B, Stark K, Zuchtriegel G, Eckart A, Miller M, Puhr-Westerheide D, Praetner M, Rehberg M, Khandoga AG, Lauber K, Massberg S, Krombach F, Reichel CA (2013) Matrix metalloproteinases modulate ameboid-like migration of neutrophils through inflamed interstitial tissue. Blood 122(5):770–780. doi: 10.1182/blood-2012-12-472944 PubMedCentralPubMedGoogle Scholar
  87. 87.
    Khandoga AG, Khandoga A, Reichel CA, Bihari P, Rehberg M, Krombach F (2009) In vivo imaging and quantitative analysis of leukocyte directional migration and polarization in inflamed tissue. PloS ONE 4(3):e4693. doi: 10.1371/journal.pone.0004693 PubMedCentralPubMedGoogle Scholar
  88. 88.
    Vemula S, Shi J, Hanneman P, Wei L, Kapur R (2010) ROCK1 functions as a suppressor of inflammatory cell migration by regulating PTEN phosphorylation and stability. Blood 115(9):1785–1796. doi: 10.1182/blood-2009-08-237222 PubMedCentralPubMedGoogle Scholar
  89. 89.
    Zhang H, Schaff UY, Green CE, Chen H, Sarantos MR, Hu Y, Wara D, Simon SI, Lowell CA (2006) Impaired integrin-dependent function in Wiskott-Aldrich syndrome protein-deficient murine and human neutrophils. Immunity 25(2):285–295. doi: 10.1016/j.immuni.2006.06.014 PubMedGoogle Scholar
  90. 90.
    Sun C, Forster C, Nakamura F, Glogauer M (2013) Filamin-A regulates neutrophil uropod retraction through RhoA during chemotaxis. PloS ONE 8(10):e79009. doi: 10.1371/journal.pone.0079009 PubMedCentralPubMedGoogle Scholar
  91. 91.
    Shi Y, Zhang J, Mullin M, Dong B, Alberts AS, Siminovitch KA (2009) The mDial formin is required for neutrophil polarization, migration, and activation of the LARG/RhoA/ROCK signaling axis during chemotaxis. J Immunol 182(6):3837–3845. doi: 10.4049/jimmunol.0803838 PubMedGoogle Scholar
  92. 92.
    Sun CX, Magalhaes MA, Glogauer M (2007) Rac1 and Rac2 differentially regulate actin free barbed end formation downstream of the fMLP receptor. J Cell Biol 179(2):239–245. doi: 10.1083/jcb.200705122 PubMedCentralPubMedGoogle Scholar
  93. 93.
    Kumar S, Xu J, Perkins C, Guo F, Snapper S, Finkelman FD, Zheng Y, Filippi MD (2012) Cdc42 regulates neutrophil migration via crosstalk between WASp, CD11b, and microtubules. Blood 120(17):3563–3574. doi: 10.1182/blood-2012-04-426981 PubMedCentralPubMedGoogle Scholar
  94. 94.
    Schnoor M, Lai FP, Zarbock A, Klaver R, Polaschegg C, Schulte D, Weich HA, Oelkers JM, Rottner K, Vestweber D (2011) Cortactin deficiency is associated with reduced neutrophil recruitment but increased vascular permeability in vivo. J Exp Med 208(8):1721–1735. doi: 10.1084/jem.20101920 PubMedCentralPubMedGoogle Scholar
  95. 95.
    Park H, Staehling-Hampton K, Appleby MW, Brunkow ME, Habib T, Zhang Y, Ramsdell F, Liggitt HD, Freie B, Tsang M, Carlson G, Friend S, Frevert C, Iritani BM (2008) A point mutation in the murine Hem1 gene reveals an essential role for hematopoietic protein 1 in lymphopoiesis and innate immunity. J Exp Med 205(12):2899–2913. doi: 10.1084/jem.20080340 PubMedCentralPubMedGoogle Scholar
  96. 96.
    Nishikimi A, Fukuhara H, Su W, Hongu T, Takasuga S, Mihara H, Cao Q, Sanematsu F, Kanai M, Hasegawa H, Tanaka Y, Shibasaki M, Kanaho Y, Sasaki T, Frohman MA, Fukui Y (2009) Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis. Science 324(5925):384–387. doi: 10.1126/science.1170179 PubMedCentralPubMedGoogle Scholar
  97. 97.
    Graham DB, Zinselmeyer BH, Mascarenhas F, Delgado R, Miller MJ, Swat W (2009) ITAM signaling by Vav family Rho guanine nucleotide exchange factors regulates interstitial transit rates of neutrophils in vivo. PloS ONE 4(2):e4652. doi: 10.1371/journal.pone.0004652 PubMedCentralPubMedGoogle Scholar
  98. 98.
    Gray EE, Suzuki K, Cyster JG (2011) Cutting edge: identification of a motile IL-17-producing gammadelta T cell population in the dermis. J Immunol 186(11):6091–6095. doi: 10.4049/jimmunol.1100427 PubMedCentralPubMedGoogle Scholar
  99. 99.
    Gebhardt T, Whitney PG, Zaid A, Mackay LK, Brooks AG, Heath WR, Carbone FR, Mueller SN (2011) Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477(7363):216–219. doi: 10.1038/nature10339 PubMedGoogle Scholar
  100. 100.
    Celli S, Albert ML, Bousso P (2011) Visualizing the innate and adaptive immune responses underlying allograft rejection by two-photon microscopy. Nat Med 17(6):744–749. doi: 10.1038/nm.2376 PubMedGoogle Scholar
  101. 101.
    Mrass P, Petravic J, Davenport MP, Weninger W (2010) Cell-autonomous and environmental contributions to the interstitial migration of T cells. Semin Immunopathol 32(3):257–274. doi: 10.1007/s00281-010-0212-1 PubMedCentralPubMedGoogle Scholar
  102. 102.
    Matheu MP, Beeton C, Garcia A, Chi V, Rangaraju S, Safrina O, Monaghan K, Uemura MI, Li D, Pal S, de la Maza LM, Monuki E, Flugel A, Pennington MW, Parker I, Chandy KG, Cahalan MD (2008) Imaging of effector memory T cells during a delayed-type hypersensitivity reaction and suppression by Kv1.3 channel block. Immunity 29(4):602–614. doi: 10.1016/j.immuni.2008.07.015 PubMedCentralPubMedGoogle Scholar
  103. 103.
    Chow Z, Mueller SN, Deane JA, Hickey MJ (2013) Dermal regulatory T cells display distinct migratory behavior that is modulated during adaptive and innate inflammation. J Immunol 191(6):3049–3056. doi: 10.4049/jimmunol.1203205 PubMedGoogle Scholar
  104. 104.
    Filipe-Santos O, Pescher P, Breart B, Lippuner C, Aebischer T, Glaichenhaus N, Spath GF, Bousso P (2009) A dynamic map of antigen recognition by CD4 T cells at the site of Leishmania major infection. Cell Host Microbe 6(1):23–33. doi: 10.1016/j.chom.2009.04.014 PubMedGoogle Scholar
  105. 105.
    Egawa G, Honda T, Tanizaki H, Doi H, Miyachi Y, Kabashima K (2011) In vivo imaging of T-cell motility in the elicitation phase of contact hypersensitivity using two-photon microscopy. J Invest Dermatol 131(4):977–979. doi: 10.1038/jid.2010.386 PubMedGoogle Scholar
  106. 106.
    Honda T, Egen JG, Lämmermann T, Kastenmüller W, Torabi-Parizi P, Germain RN (2014) Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function in inflamed tissues. Immunity. doi: 10.1016/j.immuni.2013.11.017 PubMedGoogle Scholar
  107. 107.
    Overstreet MG, Gaylo A, Angermann BR, Hughson A, Hyun YM, Lambert K, Acharya M, Billroth-Maclurg AC, Rosenberg AF, Topham DJ, Yagita H, Kim M, Lacy-Hulbert A, Meier-Schellersheim M, Fowell DJ (2013) Inflammation-induced interstitial migration of effector CD4(+) T cells is dependent on integrin alphaV. Nat Immunol 14(9):949–958. doi: 10.1038/ni.2682 PubMedGoogle Scholar
  108. 108.
    Boissonnas A, Fetler L, Zeelenberg IS, Hugues S, Amigorena S (2007) In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 204(2):345–356. doi: 10.1084/jem.20061890 PubMedCentralPubMedGoogle Scholar
  109. 109.
    Mrass P, Takano H, Ng LG, Daxini S, Lasaro MO, Iparraguirre A, Cavanagh LL, von Andrian UH, Ertl HC, Haydon PG, Weninger W (2006) Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J Exp Med 203(12):2749–2761. doi: 10.1084/jem.20060710 PubMedCentralPubMedGoogle Scholar
  110. 110.
    Wilson EH, Harris TH, Mrass P, John B, Tait ED, Wu GF, Pepper M, Wherry EJ, Dzierzinski F, Roos D, Haydon PG, Laufer TM, Weninger W, Hunter CA (2009) Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity 30(2):300–311. doi: 10.1016/j.immuni.2008.12.013 PubMedCentralPubMedGoogle Scholar
  111. 111.
    Pflicke H, Sixt M (2009) Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J Exp Med 206(13):2925–2935. doi: 10.1084/jem.20091739 PubMedCentralPubMedGoogle Scholar
  112. 112.
    Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF, Luther SA, Bollenbach T, Sixt M (2013) Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339(6117):328–332. doi: 10.1126/science.1228456 PubMedGoogle Scholar
  113. 113.
    Kilarski WW, Guc E, Teo JC, Oliver SR, Lund AW, Swartz MA (2013) Intravital immunofluorescence for visualizing the microcirculatory and immune microenvironments in the mouse ear dermis. PloS ONE 8(2):e57135. doi: 10.1371/journal.pone.0057135 PubMedCentralPubMedGoogle Scholar
  114. 114.
    Nishibu A, Ward BR, Jester JV, Ploegh HL, Boes M, Takashima A (2006) Behavioral responses of epidermal Langerhans cells in situ to local pathological stimuli. J Invest Dermatol 126(4):787–796. doi: 10.1038/sj.jid.5700107 PubMedGoogle Scholar
  115. 115.
    Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P, Romani N, Tripp CH, Douillard P, Leserman L, Kaiserlian D, Saeland S, Davoust J, Malissen B (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22(5):643–654. doi: 10.1016/j.immuni.2005.04.004 PubMedGoogle Scholar
  116. 116.
    Gaiser MR, Lämmermann T, Feng X, Igyarto BZ, Kaplan DH, Tessarollo L, Germain RN, Udey MC (2012) Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo. Proc Natl Acad Sci U S A 109(15):E889–E897. doi: 10.1073/pnas.1117674109 PubMedCentralPubMedGoogle Scholar
  117. 117.
    Ng LG, Hsu A, Mandell MA, Roediger B, Hoeller C, Mrass P, Iparraguirre A, Cavanagh LL, Triccas JA, Beverley SM, Scott P, Weninger W (2008) Migratory dermal dendritic cells act as rapid sensors of protozoan parasites. PloS Pathog 4(11):e1000222. doi: 10.1371/journal.ppat.1000222 PubMedCentralPubMedGoogle Scholar
  118. 118.
    Tal O, Lim HY, Gurevich I, Milo I, Shipony Z, Ng LG, Angeli V, Shakhar G (2011) DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J Exp Med 208(10):2141–2153. doi: 10.1084/jem.20102392 PubMedCentralPubMedGoogle Scholar
  119. 119.
    Nitschke M, Aebischer D, Abadier M, Haener S, Lucic M, Vigl B, Luche H, Fehling HJ, Biehlmaier O, Lyck R, Halin C (2012) Differential requirement for ROCK in dendritic cell migration within lymphatic capillaries in steady-state and inflammation. Blood 120(11):2249–2258. doi: 10.1182/blood-2012-03-417923 PubMedGoogle Scholar
  120. 120.
    Benvenuti F, Hugues S, Walmsley M, Ruf S, Fetler L, Popoff M, Tybulewicz VL, Amigorena S (2004) Requirement of Rac1 and Rac2 expression by mature dendritic cells for T cell priming. Science 305(5687):1150–1153. doi: 10.1126/science.1099159 PubMedGoogle Scholar
  121. 121.
    Tanizaki H, Egawa G, Inaba K, Honda T, Nakajima S, Moniaga CS, Otsuka A, Ishizaki T, Tomura M, Watanabe T, Miyachi Y, Narumiya S, Okada T, Kabashima K (2010) Rho-mDia1 pathway is required for adhesion, migration, and T-cell stimulation in dendritic cells. Blood 116(26):5875–5884. doi: 10.1182/blood-2010-01-264150 PubMedGoogle Scholar
  122. 122.
    Snapper SB, Meelu P, Nguyen D, Stockton BM, Bozza P, Alt FW, Rosen FS, von Andrian UH, Klein C (2005) WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo. J Leukoc Biol 77(6):993–998. doi: 10.1189/jlb.0804444 PubMedGoogle Scholar
  123. 123.
    Bouma G, Burns S, Thrasher AJ (2007) Impaired T-cell priming in vivo resulting from dysfunction of WASp-deficient dendritic cells. Blood 110(13):4278–4284. doi: 10.1182/blood-2007-06-096875 PubMedGoogle Scholar
  124. 124.
    de Noronha S, Hardy S, Sinclair J, Blundell MP, Strid J, Schulz O, Zwirner J, Jones GE, Katz DR, Kinnon C, Thrasher AJ (2005) Impaired dendritic-cell homing in vivo in the absence of Wiskott-Aldrich syndrome protein. Blood 105(4):1590–1597. doi: 10.1182/blood-2004-06-2332 PubMedGoogle Scholar
  125. 125.
    Frittoli E, Matteoli G, Palamidessi A, Mazzini E, Maddaluno L, Disanza A, Yang C, Svitkina T, Rescigno M, Scita G (2011) The signaling adaptor Eps8 is an essential actin capping protein for dendritic cell migration. Immunity 35(3):388–399. doi: 10.1016/j.immuni.2011.07.007 PubMedCentralPubMedGoogle Scholar
  126. 126.
    Yamakita Y, Matsumura F, Lipscomb MW, Chou PC, Werlen G, Burkhardt JK, Yamashiro S (2011) Fascin1 promotes cell migration of mature dendritic cells. J Immunol 186(5):2850–2859. doi: 10.4049/jimmunol.1001667 PubMedCentralPubMedGoogle Scholar
  127. 127.
    Wang Z, Kumamoto Y, Wang P, Gan X, Lehmann D, Smrcka AV, Cohn L, Iwasaki A, Li L, Wu D (2009) Regulation of immature dendritic cell migration by RhoA guanine nucleotide exchange factor Arhgef5. J Biol Chem 284(42):28599–28606. doi: 10.1074/jbc.M109.047282 PubMedCentralPubMedGoogle Scholar
  128. 128.
    Ocana-Morgner C, Reichardt P, Chopin M, Braungart S, Wahren C, Gunzer M, Jessberger R (2011) Sphingosine 1-phosphate-induced motility and endocytosis of dendritic cells is regulated by SWAP-70 through RhoA. J Immunol 186(9):5345–5355. doi: 10.4049/jimmunol.1003461 PubMedGoogle Scholar
  129. 129.
    Takamatsu H, Takegahara N, Nakagawa Y, Tomura M, Taniguchi M, Friedel RH, Rayburn H, Tessier-Lavigne M, Yoshida Y, Okuno T, Mizui M, Kang S, Nojima S, Tsujimura T, Nakatsuji Y, Katayama I, Toyofuku T, Kikutani H, Kumanogoh A (2010) Semaphorins guide the entry of dendritic cells into the lymphatics by activating myosin II. Nat Immunol 11(7):594–600. doi: 10.1038/ni.1885 PubMedCentralPubMedGoogle Scholar
  130. 130.
    Acton SE, Astarita JL, Malhotra D, Lukacs-Kornek V, Franz B, Hess PR, Jakus Z, Kuligowski M, Fletcher AL, Elpek KG, Bellemare-Pelletier A, Sceats L, Reynoso ED, Gonzalez SF, Graham DB, Chang J, Peters A, Woodruff M, Kim YA, Swat W, Morita T, Kuchroo V, Carroll MC, Kahn ML, Wucherpfennig KW, Turley SJ (2012) Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity 37(2):276–289. doi: 10.1016/j.immuni.2012.05.022 PubMedCentralPubMedGoogle Scholar
  131. 131.
    Luckashenak N, Wahe A, Breit K, Brakebusch C, Brocker T (2013) Rho-family GTPase Cdc42 controls migration of Langerhans cells in vivo. J Immunol 190(1):27–35. doi: 10.4049/jimmunol.1201082 PubMedGoogle Scholar
  132. 132.
    Zhang Q, Davis JC, Lamborn IT, Freeman AF, Jing H, Favreau AJ, Matthews HF, Davis J, Turner ML, Uzel G, Holland SM, Su HC (2009) Combined immunodeficiency associated with DOCK8 mutations. N Engl J Med 361(21):2046–2055. doi: 10.1056/NEJMoa0905506 PubMedCentralPubMedGoogle Scholar
  133. 133.
    Engelhardt KR, McGhee S, Winkler S, Sassi A, Woellner C, Lopez-Herrera G, Chen A, Kim HS, Lloret MG, Schulze I, Ehl S, Thiel J, Pfeifer D, Veelken H, Niehues T, Siepermann K, Weinspach S, Reisli I, Keles S, Genel F, Kutukculer N, Camcioglu Y, Somer A, Karakoc-Aydiner E, Barlan I, Gennery A, Metin A, Degerliyurt A, Pietrogrande MC, Yeganeh M, Baz Z, Al-Tamemi S, Klein C, Puck JM, Holland SM, McCabe ER, Grimbacher B, Chatila TA (2009) Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J Allergy Clin Immunol 124(6):1302, e1284Google Scholar
  134. 134.
    Su HC, Jing H, Zhang Q (2011) DOCK8 deficiency. Ann N Y Acad Sci 1246:26–33. doi: 10.1111/j.1749-6632.2011.06295.x PubMedGoogle Scholar
  135. 135.
    Randall KL, Lambe T, Johnson AL, Treanor B, Kucharska E, Domaschenz H, Whittle B, Tze LE, Enders A, Crockford TL, Bouriez-Jones T, Alston D, Cyster JG, Lenardo MJ, Mackay F, Deenick EK, Tangye SG, Chan TD, Camidge T, Brink R, Vinuesa CG, Batista FD, Cornall RJ, Goodnow CC (2009) Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nat Immunol 10(12):1283–1291. doi: 10.1038/ni.1820 PubMedCentralPubMedGoogle Scholar
  136. 136.
    Randall KL, Chan SS, Ma CS, Fung I, Mei Y, Yabas M, Tan A, Arkwright PD, Al Suwairi W, Lugo Reyes SO, Yamazaki-Nakashimada MA, Garcia-Cruz Mde L, Smart JM, Picard C, Okada S, Jouanguy E, Casanova JL, Lambe T, Cornall RJ, Russell S, Oliaro J, Tangye SG, Bertram EM, Goodnow CC (2011) DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J Exp Med 208(11):2305–2320. doi: 10.1084/jem.20110345 PubMedCentralPubMedGoogle Scholar
  137. 137.
    Lambe T, Crawford G, Johnson AL, Crockford TL, Bouriez-Jones T, Smyth AM, Pham TH, Zhang Q, Freeman AF, Cyster JG, Su HC, Cornall RJ (2011) DOCK8 is essential for T-cell survival and the maintenance of CD8+ T-cell memory. Eur J Immunol 41(12):3423–3435. doi: 10.1002/eji.201141759 PubMedCentralPubMedGoogle Scholar
  138. 138.
    Crawford G, Enders A, Gileadi U, Stankovic S, Zhang Q, Lambe T, Crockford TL, Lockstone HE, Freeman A, Arkwright PD, Smart JM, Ma CS, Tangye SG, Goodnow CC, Cerundolo V, Godfrey DI, Su HC, Randall KL, Cornall RJ (2013) DOCK8 is critical for the survival and function of NKT cells. Blood 122(12):2052–2061. doi: 10.1182/blood-2013-02-482331 PubMedGoogle Scholar
  139. 139.
    McGhee SA, Chatila TA (2010) DOCK8 immune deficiency as a model for primary cytoskeletal dysfunction. Dis Markers 29(3–4):151–156. doi: 10.3233/DMA-2010-0740 PubMedCentralPubMedGoogle Scholar
  140. 140.
    Massaad MJ, Ramesh N, Geha RS (2013) Wiskott-Aldrich syndrome: a comprehensive review. Ann N Y Acad Sci 1285:26–43. doi: 10.1111/nyas.12049 PubMedGoogle Scholar
  141. 141.
    Badolato R (2013) Defects of leukocyte migration in primary immunodeficiencies. Eur J Immunol 43(6):1436–1440. doi: 10.1002/eji.201243155 PubMedGoogle Scholar
  142. 142.
    Ariotti S, Beltman JB, Chodaczek G, Hoekstra ME, van Beek AE, Gomez-Eerland R, Ritsma L, van Rheenen J, Maree AF, Zal T, de Boer RJ, Haanen JB, Schumacher TN (2012) Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen. Proc Natl Acad Sci U S A 109(48):19739–19744. doi: 10.1073/pnas.1208927109 PubMedCentralPubMedGoogle Scholar
  143. 143.
    Chodaczek G, Papanna V, Zal MA, Zal T (2012) Body-barrier surveillance by epidermal gammadelta TCRs. Nat Immunol 13(3):272–282. doi: 10.1038/ni.2240 PubMedCentralPubMedGoogle Scholar
  144. 144.
    Edelblum KL, Shen L, Weber CR, Marchiando AM, Clay BS, Wang Y, Prinz I, Malissen B, Sperling AI, Turner JR (2012) Dynamic migration of gammadelta intraepithelial lymphocytes requires occludin. Proc Natl Acad Sci U S A 109(18):7097–7102. doi: 10.1073/pnas.1112519109 PubMedCentralPubMedGoogle Scholar
  145. 145.
    Kawakami N, Flugel A (2010) Knocking at the brain’s door: intravital two-photon imaging of autoreactive T cell interactions with CNS structures. Semin Immunopathol 32(3):275–287. doi: 10.1007/s00281-010-0216-x PubMedCentralPubMedGoogle Scholar
  146. 146.
    Wilson EH, Weninger W, Hunter CA (2010) Trafficking of immune cells in the central nervous system. J Clin Invest 120(5):1368–1379. doi: 10.1172/JCI41911 PubMedCentralPubMedGoogle Scholar
  147. 147.
    Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, McGavern DB (2013) Transcranial amelioration of inflammation and cell death after brain injury. Nature. doi: 10.1038/nature12808 Google Scholar
  148. 148.
    Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758. doi: 10.1038/nn1472 PubMedGoogle Scholar
  149. 149.
    Bartholomaus I, Kawakami N, Odoardi F, Schlager C, Miljkovic D, Ellwart JW, Klinkert WE, Flugel-Koch C, Issekutz TB, Wekerle H, Flugel A (2009) Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462(7269):94–98. doi: 10.1038/nature08478 PubMedGoogle Scholar
  150. 150.
    Yin X, Chtanova T, Ladi E, Robey EA (2006) Thymocyte motility: mutants, movies and migration patterns. Curr Opin Immunol 18(2):191–197. doi: 10.1016/j.coi.2006.02.004 PubMedGoogle Scholar
  151. 151.
    Arnon TI, Horton RM, Grigorova IL, Cyster JG (2013) Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature 493(7434):684–688. doi: 10.1038/nature11738 PubMedCentralPubMedGoogle Scholar
  152. 152.
    Cyster JG (2010) B cell follicles and antigen encounters of the third kind. Nat Immunol 11(11):989–996. doi: 10.1038/ni.1946 PubMedGoogle Scholar
  153. 153.
    Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M, Dustin ML, Nussenzweig MC (2010) Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143(4):592–605. doi: 10.1016/j.cell.2010.10.032 PubMedCentralPubMedGoogle Scholar
  154. 154.
    Fooksman DR, Vardhana S, Vasiliver-Shamis G, Liese J, Blair DA, Waite J, Sacristan C, Victora GD, Zanin-Zhorov A, Dustin ML (2010) Functional anatomy of T cell activation and synapse formation. Annu Rev Immunol 28:79–105. doi: 10.1146/annurev-immunol-030409-101308 PubMedCentralPubMedGoogle Scholar
  155. 155.
    Egen JG, Rothfuchs AG, Feng CG, Horwitz MA, Sher A, Germain RN (2011) Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34(5):807–819. doi: 10.1016/j.immuni.2011.03.022 PubMedCentralPubMedGoogle Scholar
  156. 156.
    Egen JG, Rothfuchs AG, Feng CG, Winter N, Sher A, Germain RN (2008) Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity 28(2):271–284. doi: 10.1016/j.immuni.2007.12.010 PubMedCentralPubMedGoogle Scholar
  157. 157.
    Torabi-Parizi P, Vrisekoop N, Kastenmuller W, Gerner MY, Egen JG, Germain RN (2014) Pathogen-related differences in the abundance of presented antigen are reflected in CD4+ T cell dynamic behavior and effector function in the lung. J Immunol. doi: 10.4049/jimmunol.1301743 PubMedGoogle Scholar
  158. 158.
    Mueller SN, Germain RN (2009) Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol 9(9):618–629. doi: 10.1038/nri2588 PubMedCentralPubMedGoogle Scholar
  159. 159.
    Lammermann T, Sixt M (2008) The microanatomy of T-cell responses. Immunol Rev 221:26–43. doi: 10.1111/j.1600-065X.2008.00592.x PubMedGoogle Scholar
  160. 160.
    Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T, Dustin ML, Nussenzweig MC (2004) Visualizing dendritic cell networks in vivo. Nat Immunol 5(12):1243–1250. doi: 10.1038/ni1139 PubMedGoogle Scholar
  161. 161.
    Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, Germain RN (2006) Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25(6):989–1001. doi: 10.1016/j.immuni.2006.10.011 PubMedCentralPubMedGoogle Scholar
  162. 162.
    Katakai T, Habiro K, Kinashi T (2013) Dendritic cells regulate high-speed interstitial T cell migration in the lymph node via LFA-1/ICAM-1. J Immunol 191(3):1188–1199. doi: 10.4049/jimmunol.1300739 PubMedGoogle Scholar
  163. 163.
    Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, Pabst R, Lutz MB, Sorokin L (2005) The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22(1):19–29. doi: 10.1016/j.immuni.2004.11.013 PubMedGoogle Scholar
  164. 164.
    Asperti-Boursin F, Real E, Bismuth G, Trautmann A, Donnadieu E (2007) CCR7 ligands control basal T cell motility within lymph node slices in a phosphoinositide 3-kinase-independent manner. J Exp Med 204(5):1167–1179. doi: 10.1084/jem.20062079 PubMedCentralPubMedGoogle Scholar
  165. 165.
    Worbs T, Mempel TR, Bolter J, von Andrian UH, Forster R (2007) CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J Exp Med 204(3):489–495. doi: 10.1084/jem.20061706 PubMedCentralPubMedGoogle Scholar
  166. 166.
    Okada T, Cyster JG (2007) CC chemokine receptor 7 contributes to Gi-dependent T cell motility in the lymph node. J Immunol 178(5):2973–2978PubMedGoogle Scholar
  167. 167.
    Luther SA, Tang HL, Hyman PL, Farr AG, Cyster JG (2000) Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc Natl Acad Sci U S A 97(23):12694–12699. doi: 10.1073/pnas.97.23.12694 PubMedCentralPubMedGoogle Scholar
  168. 168.
    Schumann K, Lammermann T, Bruckner M, Legler DF, Polleux J, Spatz JP, Schuler G, Forster R, Lutz MB, Sorokin L, Sixt M (2010) Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 32(5):703–713. doi: 10.1016/j.immuni.2010.04.017 PubMedGoogle Scholar
  169. 169.
    Boscacci RT, Pfeiffer F, Gollmer K, Sevilla AI, Martin AM, Soriano SF, Natale D, Henrickson S, von Andrian UH, Fukui Y, Mellado M, Deutsch U, Engelhardt B, Stein JV (2010) Comprehensive analysis of lymph node stroma-expressed Ig superfamily members reveals redundant and nonredundant roles for ICAM-1, ICAM-2, and VCAM-1 in lymphocyte homing. Blood 116(6):915–925. doi: 10.1182/blood-2009-11-254334 PubMedCentralPubMedGoogle Scholar
  170. 170.
    Park EJ, Peixoto A, Imai Y, Goodarzi A, Cheng G, Carman CV, von Andrian UH, Shimaoka M (2010) Distinct roles for LFA-1 affinity regulation during T-cell adhesion, diapedesis, and interstitial migration in lymph nodes. Blood 115(8):1572–1581. doi: 10.1182/blood-2009-08-237917 PubMedCentralPubMedGoogle Scholar
  171. 171.
    Reichardt P, Patzak I, Jones K, Etemire E, Gunzer M, Hogg N (2013) A role for LFA-1 in delaying T-lymphocyte egress from lymph nodes. EMBO J 32(6):829–843. doi: 10.1038/emboj.2013.33 PubMedCentralPubMedGoogle Scholar
  172. 172.
    Soriano SF, Hons M, Schumann K, Kumar V, Dennier TJ, Lyck R, Sixt M, Stein JV (2011) In vivo analysis of uropod function during physiological T cell trafficking. J Immunol 187(5):2356–2364. doi: 10.4049/jimmunol.1100935 PubMedGoogle Scholar
  173. 173.
    Liu Y, Belkina NV, Park C, Nambiar R, Loughhead SM, Patino-Lopez G, Ben-Aissa K, Hao JJ, Kruhlak MJ, Qi H, von Andrian UH, Kehrl JH, Tyska MJ, Shaw S (2012) Constitutively active ezrin increases membrane tension, slows migration, and impedes endothelial transmigration of lymphocytes in vivo in mice. Blood 119(2):445–453. doi: 10.1182/blood-2011-07-368860 PubMedCentralPubMedGoogle Scholar
  174. 174.
    Faroudi M, Hons M, Zachacz A, Dumont C, Lyck R, Stein JV, Tybulewicz VL (2010) Critical roles for Rac GTPases in T-cell migration to and within lymph nodes. Blood 116(25):5536–5547. doi: 10.1182/blood-2010-08-299438 PubMedCentralPubMedGoogle Scholar
  175. 175.
    Nombela-Arrieta C, Mempel TR, Soriano SF, Mazo I, Wymann MP, Hirsch E, Martinez AC, Fukui Y, von Andrian UH, Stein JV (2007) A central role for DOCK2 during interstitial lymphocyte motility and sphingosine-1-phosphate-mediated egress. J Exp Med 204(3):497–510. doi: 10.1084/jem.20061780 PubMedCentralPubMedGoogle Scholar
  176. 176.
    Shiow LR, Roadcap DW, Paris K, Watson SR, Grigorova IL, Lebet T, An J, Xu Y, Jenne CN, Foger N, Sorensen RU, Goodnow CC, Bear JE, Puck JM, Cyster JG (2008) The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency. Nat Immunol 9(11):1307–1315. doi: 10.1038/ni.1662 PubMedCentralPubMedGoogle Scholar
  177. 177.
    Braun A, Worbs T, Moschovakis GL, Halle S, Hoffmann K, Bolter J, Munk A, Forster R (2011) Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nat Immunol 12(9):879–887. doi: 10.1038/ni.2085 PubMedGoogle Scholar
  178. 178.
    Okada T, Miller MJ, Parker I, Krummel MF, Neighbors M, Hartley SB, O’Garra A, Cahalan MD, Cyster JG (2005) Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol 3(6):e150. doi: 10.1371/journal.pbio.0030150 PubMedCentralPubMedGoogle Scholar
  179. 179.
    Andreasen SO, Thomsen AR, Koteliansky VE, Novobrantseva TI, Sprague AG, de Fougerolles AR, Christensen JP (2003) Expression and functional importance of collagen-binding integrins, alpha 1 beta 1 and alpha 2 beta 1, on virus-activated T cells. J Immunol 171(6):2804–2811PubMedGoogle Scholar
  180. 180.
    Cohen SJ, Gurevich I, Feigelson SW, Petrovich E, Moser M, Shakhar G, Fassler R, Alon R (2013) The integrin coactivator Kindlin-3 is not required for lymphocyte diapedesis. Blood 122(15):2609–2617. doi: 10.1182/blood-2013-04-495036 PubMedGoogle Scholar
  181. 181.
    Grabbe S, Varga G, Beissert S, Steinert M, Pendl G, Seeliger S, Bloch W, Peters T, Schwarz T, Sunderkotter C, Scharffetter-Kochanek K (2002) Beta2 integrins are required for skin homing of primed T cells but not for priming naive T cells. J Clin Invest 109(2):183–192. doi: 10.1172/JCI11703 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2014

Authors and Affiliations

  1. 1.Laboratory of Systems Biology, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations