Seminars in Immunopathology

, Volume 36, Issue 2, pp 163–176 | Cite as

Ectoenzymes in leukocyte migration and their therapeutic potential

Review

Abstract

Inflammation causes or accompanies a huge variety of diseases. Migration of leukocytes from the blood into the tissues, in the tissues, and from the tissues to lymphatic vasculature is crucial in the formation and resolution of inflammatory infiltrates. In addition to classical adhesion and activation molecules, several other molecules are known to contribute to the leukocyte traffic. Several of them belong to ectoenzymes, which are cell surface molecules having catalytically active sites outside the cell. We will review here how several ectoenzymes present on leukocytes or endothelial cell surface function as adhesins and/or modulate the extravasation cascade through their enzymatic activities. Moreover, their therapeutic potential as immune modulators in different experimental inflammation models and in clinical trials will be discussed.

Keywords

Ectoenzymes Leukocyte migration Endothelium Inflammation 

Abbreviations

ADAM

a disintegrin and metalloproteinase

ADP

adenine diphosphate

AMP

adenine monophosphate

AOC3

amine oxidase copper-containing 3

ATP

adenine triphosphate

cADPR

cyclic ADP ribose

LFA

lymphocyte function-associated antigen

LPS

lipopolysaccharide

ICAM

intercellular adhesion molecule

IL

interleukin

JAM

junctional adhesion molecule

Mac

macrophage antigen

MAdCAM

mucosal addressin cell adhesion molecule

MT-1-MMP

membrane bound matrix metalloproteinase 1

NAAD(P)

nicotinic acid adenine dinucleotide (phosphate)

NAD(P)

nicotinamide adenine dinucleotide (phosphate)

NF-κB

nuclear factor kappa-light-chain-enhancer of activated B cells

SSAO

semicarbazide sensitive amine oxidase

TNF-α

tumor necrosis factor-alpha

VAP-1

vascular adhesion protein-1

VCAM

vascular cell adhesion molecule

References

  1. 1.
    Goding JW, Howard MC (1998) Ecto-enzymes of lymphoid cells. Immunol Rev 161:5–10PubMedGoogle Scholar
  2. 2.
    Aalto K, Autio A, Kiss EA, Elima K, Nymalm Y, Veres TZ, Marttila-Ichihara F, Elovaara H, Saanijoki T, Crocker PR, Maksimow M, Bligt E, Salminen TA, Salmi M, Roivainen A, Jalkanen S (2011) Siglec-9 is a novel leukocyte ligand for vascular adhesion protein-1 and can be used in PET imaging of inflammation and cancer. Blood 118:3725–3733PubMedGoogle Scholar
  3. 3.
    Kirveskari J, Bono P, Granfors K, Leirisalo-Repo M, Jalkanen S, Salmi M (2000) Expression of alpha4-integrins on human neutrophils. J Leukoc Biol 68:243–250PubMedGoogle Scholar
  4. 4.
    Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689PubMedGoogle Scholar
  5. 5.
    Girard JP, Moussion C, Forster R (2012) HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol 12:762–773PubMedGoogle Scholar
  6. 6.
    Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6:1182–1190PubMedGoogle Scholar
  7. 7.
    Vestweber D (2012) Novel insights into leukocyte extravasation. Curr Opin Hematol 19:212–217PubMedGoogle Scholar
  8. 8.
    Nourshargh S, Hordijk PL, Sixt M (2010) Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat Rev Mol Cell Biol 11:366–378PubMedGoogle Scholar
  9. 9.
    Muller WA (2011) Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol 6:323–344PubMedCentralPubMedGoogle Scholar
  10. 10.
    Zarbock A, Ley K, McEver RP, Hidalgo A (2011) Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood 118:6743–6751PubMedCentralPubMedGoogle Scholar
  11. 11.
    Hogg N, Patzak I, Willenbrock F (2011) The insider’s guide to leukocyte integrin signalling and function. Nat Rev Immunol 11:416–426PubMedGoogle Scholar
  12. 12.
    Bromley SK, Mempel TR, Luster AD (2008) Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol 9:970–980PubMedGoogle Scholar
  13. 13.
    Mackay CR (2008) Moving targets: cell migration inhibitors as new anti-inflammatory therapies. Nat Immunol 9:988–998PubMedGoogle Scholar
  14. 14.
    Sallusto F, Baggiolini M (2008) Chemokines and leukocyte traffic. Nat Immunol 9:949–952PubMedGoogle Scholar
  15. 15.
    Salmi M, Jalkanen S (2005) Cell-surface enzymes in control of leukocyte trafficking. Nat Rev Immunol 5:760–771PubMedGoogle Scholar
  16. 16.
    Antonioli L, Pacher P, Vizi ES, Hasko G (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med 19:355–367PubMedGoogle Scholar
  17. 17.
    Quarona V, Zaccarello G, Chillemi A, Brunetti E, Singh VK, Ferrero E, Funaro A, Horenstein AL, Malavasi F (2013) CD38 and CD157: a long journey from activation markers to multifunctional molecules. Cytometry B Clin Cytom 84:207–217PubMedGoogle Scholar
  18. 18.
    Salmi M, Jalkanen S (2012) Ectoenzymes controlling leukocyte traffic. Eur J Immunol 42:284–292PubMedGoogle Scholar
  19. 19.
    Van Lint P, Libert C (2007) Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 82:1375–1381PubMedGoogle Scholar
  20. 20.
    Salmi M, Jalkanen S (1992) A 90-kilodalton endothelial cell molecule mediating lymphocyte binding in humans. Science 257:1407–1409PubMedGoogle Scholar
  21. 21.
    Smith DJ, Salmi M, Bono P, Hellman J, Leu T, Jalkanen S (1998) Cloning of vascular adhesion protein 1 reveals a novel multifunctional adhesion molecule. J Exp Med 188:17–27PubMedCentralPubMedGoogle Scholar
  22. 22.
    Klinman JP (2003) The multi-functional topa-quinone copper amine oxidases. Biochim Biophys Acta 1647:131–137PubMedGoogle Scholar
  23. 23.
    Jalkanen S, Salmi M (2001) Cell surface monoamine oxidases: enzymes in search of a function. EMBO J 20:3893–3901PubMedCentralPubMedGoogle Scholar
  24. 24.
    Kivi E, Elima K, Aalto K, Nymalm Y, Auvinen K, Koivunen E, Otto DM, Crocker PR, Salminen TA, Salmi M, Jalkanen S (2009) Human Siglec-10 can bind to vascular adhesion protein-1 and serves as its substrate. Blood 114:5385–5392PubMedCentralPubMedGoogle Scholar
  25. 25.
    Salmi M, Jalkanen S (1996) Human vascular adhesion protein 1 (VAP-1) is a unique sialoglycoprotein that mediates carbohydrate-dependent binding of lymphocytes to endothelial cells. J Exp Med 183:569–579PubMedGoogle Scholar
  26. 26.
    Salminen TA, Smith DJ, Jalkanen S, Johnson MS (1998) Structural model of the catalytic domain of an enzyme with cell adhesion activity: human vascular adhesion protein-1 (HVAP-1) D4 domain is an amine oxidase. Protein Eng 11:1195–1204PubMedGoogle Scholar
  27. 27.
    Dunkel P, Gelain A, Barlocco D, Haider N, Gyires K, Sperlagh B, Magyar K, Maccioni E, Fadda A, Matyus P (2008) Semicarbazide-sensitive amine oxidase/vascular adhesion protein 1: recent developments concerning substrates and inhibitors of a promising therapeutic target. Curr Med Chem 15:1827–1839PubMedGoogle Scholar
  28. 28.
    Dunkel P, Balogh B, Meleddu R, Maccioni E, Gyires K, Matyus P (2011) Semicarbazide-sensitive amine oxidase/vascular adhesion protein-1: a patent survey. Expert Opin Ther Pat 21:1453–1471PubMedGoogle Scholar
  29. 29.
    Foot JS, Yow TT, Schilter H, Buson A, Deodhar M, Findlay AD, Guo L, McDonald IA, Turner CI, Zhou W, Jarolimek W (2013) PXS-4681A, a potent and selective mechanism-based inhibitor of SSAO/VAP-1 with anti-inflammatory effects in vivo. J Pharmacol Exp Ther 347:365–374PubMedGoogle Scholar
  30. 30.
    Airas L, Salmi M, Jalkanen S (1993) Lymphocyte-vascular adhesion protein-2 is a novel 70-kDa molecule involved in lymphocyte adhesion to vascular endothelium. J Immunol 151:4228–4238PubMedGoogle Scholar
  31. 31.
    Salmi M, Kalimo K, Jalkanen S (1993) Induction and function of vascular adhesion protein-1 at sites of inflammation. J Exp Med 178:2255–2260PubMedGoogle Scholar
  32. 32.
    Jaakkola K, Nikula T, Holopainen R, Vahasilta T, Matikainen MT, Laukkanen ML, Huupponen R, Halkola L, Nieminen L, Hiltunen J, Parviainen S, Clark MR, Knuuti J, Savunen T, Kaapa P, Voipio-Pulkki LM, Jalkanen S (2000) In vivo detection of vascular adhesion protein-1 in experimental inflammation. Am J Pathol 157:463–471PubMedCentralPubMedGoogle Scholar
  33. 33.
    Autio A, Vainio PJ, Suilamo S, Mali A, Vainio J, Saanijoki T, Noponen T, Ahtinen H, Luoto P, Teras M, Jalkanen S, Roivainen A (2013) Preclinical evaluation of a radioiodinated fully human antibody for in vivo imaging of vascular adhesion protein-1-positive vasculature in inflammation. J Nucl Med 54:1315–1319PubMedGoogle Scholar
  34. 34.
    Zorzano A, Abella A, Marti L, Carpene C, Palacin M, Testar X (2003) Semicarbazide-sensitive amine oxidase activity exerts insulin-like effects on glucose metabolism and insulin-signaling pathways in adipose cells. Biochim Biophys Acta 1647:3–9PubMedGoogle Scholar
  35. 35.
    Stolen CM, Marttila-Ichihara F, Koskinen K, Yegutkin GG, Turja R, Bono P, Skurnik M, Hanninen A, Jalkanen S, Salmi M (2005) Absence of the endothelial oxidase AOC3 leads to abnormal leukocyte traffic in vivo. Immunity 22:105–115PubMedGoogle Scholar
  36. 36.
    Marttila-Ichihara F, Smith DJ, Stolen C, Yegutkin GG, Elima K, Mercier N, Kiviranta R, Pihlavisto M, Alaranta S, Pentikainen U, Pentikainen O, Fulop F, Jalkanen S, Salmi M (2006) Vascular amine oxidases are needed for leukocyte extravasation into inflamed joints in vivo. Arthritis Rheum 54:2852–2862PubMedGoogle Scholar
  37. 37.
    Kiss J, Jalkanen S, Fulop F, Savunen T, Salmi M (2008) Ischemia-reperfusion injury is attenuated in VAP-1-deficient mice and by VAP-1 inhibitors. Eur J Immunol 38:3041–3049PubMedGoogle Scholar
  38. 38.
    Koskinen K, Nevalainen S, Karikoski M, Hanninen A, Jalkanen S, Salmi M (2007) VAP-1-deficient mice display defects in mucosal immunity and antimicrobial responses: implications for antiadhesive applications. J Immunol 179:6160–6168PubMedGoogle Scholar
  39. 39.
    Koskinen K, Vainio PJ, Smith DJ, Pihlavisto M, Yla-Herttuala S, Jalkanen S, Salmi M (2004) Granulocyte transmigration through the endothelium is regulated by the oxidase activity of vascular adhesion protein-1 (VAP-1). Blood 103:3388–3395PubMedGoogle Scholar
  40. 40.
    O’Rourke AM, Wang EY, Salter-Cid L, Huang L, Miller A, Podar E, Gao HF, Jones DS, Linnik MD (2007) Benefit of inhibiting SSAO in relapsing experimental autoimmune encephalomyelitis. J Neural Transm 114:845–849PubMedGoogle Scholar
  41. 41.
    Yu PH, Lu LX, Fan H, Kazachkov M, Jiang ZJ, Jalkanen S, Stolen C (2006) Involvement of semicarbazide-sensitive amine oxidase-mediated deamination in lipopolysaccharide-induced pulmonary inflammation. Am J Pathol 168:718–726PubMedCentralPubMedGoogle Scholar
  42. 42.
    Martelius T, Salmi M, Krogerus L, Loginov R, Schoultz M, Karikoski M, Miiluniemi M, Soots A, Hockerstedt K, Jalkanen S, Lautenschlager I (2008) Inhibition of semicarbazide-sensitive amine oxidases decreases lymphocyte infiltration in the early phases of rat liver allograft rejection. Int J Immunopathol Pharmacol 21:911–920PubMedGoogle Scholar
  43. 43.
    Foot JS, Deodhar M, Turner CI, Yin P, van Dam EM, Silva DG, Olivieri A, Holt A, McDonald IA (2012) The discovery and development of selective 3-fluoro-4-aryloxyallylamine inhibitors of the amine oxidase activity of semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1). Bioorg Med Chem Lett 22:3935–3940PubMedGoogle Scholar
  44. 44.
    Watcharotayangul J, Mao L, Xu H, Vetri F, Baughman VL, Paisansathan C, Pelligrino DA (2012) Post-ischemic vascular adhesion protein-1 inhibition provides neuroprotection in a rat temporary middle cerebral artery occlusion model. J Neurochem 123(Suppl 2):116–124PubMedCentralPubMedGoogle Scholar
  45. 45.
    Bonder CS, Norman MU, Swain MG, Zbytnuik LD, Yamanouchi J, Santamaria P, Ajuebor M, Salmi M, Jalkanen S, Kubes P (2005) Rules of recruitment for Th1 and Th2 lymphocytes in inflamed liver: a role for alpha-4 integrin and vascular adhesion protein-1. Immunity 23:153–163PubMedGoogle Scholar
  46. 46.
    Merinen M, Irjala H, Salmi M, Jaakkola I, Hanninen A, Jalkanen S (2005) Vascular adhesion protein-1 is involved in both acute and chronic inflammation in the mouse. Am J Pathol 166:793–800PubMedCentralPubMedGoogle Scholar
  47. 47.
    Martelius T, Salaspuro V, Salmi M, Krogerus L, Hockerstedt K, Jalkanen S, Lautenschlager I (2004) Blockade of vascular adhesion protein-1 inhibits lymphocyte infiltration in rat liver allograft rejection. Am J Pathol 165:1993–2001PubMedCentralPubMedGoogle Scholar
  48. 48.
    Kirton CM, Laukkanen ML, Nieminen A, Merinen M, Stolen CM, Armour K, Smith DJ, Salmi M, Jalkanen S, Clark MR (2005) Function-blocking antibodies to human vascular adhesion protein-1: a potential anti-inflammatory therapy. Eur J Immunol 35:3119–3130PubMedGoogle Scholar
  49. 49.
    Marttila-Ichihara F, Auvinen K, Elima K, Jalkanen S, Salmi M (2009) Vascular adhesion protein-1 enhances tumor growth by supporting recruitment of Gr-1 + CD11b + myeloid cells into tumors. Cancer Res 69:7875–7883PubMedGoogle Scholar
  50. 50.
    Marttila-Ichihara F, Castermans K, Auvinen K, Oude Egbrink MG, Jalkanen S, Griffioen AW, Salmi M (2010) Small-molecule inhibitors of vascular adhesion protein-1 reduce the accumulation of myeloid cells into tumors and attenuate tumor growth in mice. J Immunol 184:3164–3173PubMedGoogle Scholar
  51. 51.
    Ferjancic S, Gil-Bernabe AM, Hill SA, Allen PD, Richardson P, Sparey T, Savory E, McGuffog J, Muschel RJ (2013) VCAM-1 and VAP-1 recruit myeloid cells that promote pulmonary metastasis in mice. Blood 121:3289–3297PubMedGoogle Scholar
  52. 52.
    Mgbemena V, Segovia J, Chang TH, Bose S (2013) KLF6 and iNOS regulates apoptosis during respiratory syncytial virus infection. Cell Immunol 283:1–7PubMedGoogle Scholar
  53. 53.
    Noda K, Miyahara S, Nakazawa T, Almulki L, Nakao S, Hisatomi T, She H, Thomas KL, Garland RC, Miller JW, Gragoudas ES, Kawai Y, Mashima Y, Hafezi-Moghadam A (2008) Inhibition of vascular adhesion protein-1 suppresses endotoxin-induced uveitis. FASEB J 22:1094–1103PubMedGoogle Scholar
  54. 54.
    Noda K, Nakao S, Zandi S, Engelstadter V, Mashima Y, Hafezi-Moghadam A (2009) Vascular adhesion protein-1 regulates leukocyte transmigration rate in the retina during diabetes. Exp Eye Res 89:774–781PubMedCentralPubMedGoogle Scholar
  55. 55.
    Noda K, She H, Nakazawa T, Hisatomi T, Nakao S, Almulki L, Zandi S, Miyahara S, Ito Y, Thomas KL, Garland RC, Miller JW, Gragoudas ES, Mashima Y, Hafezi-Moghadam A (2008) Vascular adhesion protein-1 blockade suppresses choroidal neovascularization. FASEB J 22:2928–2935PubMedCentralPubMedGoogle Scholar
  56. 56.
    Chen J, Xi J, Tian Y, Bova GS, Zhang H (2013) Identification, prioritization, and evaluation of glycoproteins for aggressive prostate cancer using quantitative glycoproteomics and antibody-based assays on tissue specimens. Proteomics 13:2268–2277PubMedGoogle Scholar
  57. 57.
    Weston C, Haughton E, Westerlund N, Claridge L, Pravin J, Smith D, Adams D (2010) Basic science: P54 vascular adhesion protein-1: a key player in the modulation of hepatic fibrosis. GUT 59:A32–A33Google Scholar
  58. 58.
    Lalor PF, Edwards S, McNab G, Salmi M, Jalkanen S, Adams DH (2002) Vascular adhesion protein-1 mediates adhesion and transmigration of lymphocytes on human hepatic endothelial cells. J Immunol 169:983–992PubMedGoogle Scholar
  59. 59.
    Tohka S, Laukkanen M, Jalkanen S, Salmi M (2001) Vascular adhesion protein 1 (VAP-1) functions as a molecular brake during granulocyte rolling and mediates recruitment in vivo. FASEB J 15:373–382PubMedGoogle Scholar
  60. 60.
    Noonan T, Lukas S, Peet GW, Pelletier J, Panzenbeck M, Hanidu A, Mazurek S, Wasti R, Rybina I, Roma T, Kronkaitis A, Shoultz A, Souza D, Jiang H, Nabozny G, Modis LK (2013) The oxidase activity of vascular adhesion protein-1 (VAP-1) is essential for function. Am J Clin Exp Immunol 2:172–185PubMedCentralPubMedGoogle Scholar
  61. 61.
    Jalkanen S, Karikoski M, Mercier N, Koskinen K, Henttinen T, Elima K, Salmivirta K, Salmi M (2007) The oxidase activity of vascular adhesion protein-1 (VAP-1) induces endothelial E- and P-selectins and leukocyte binding. Blood 110:1864–1870PubMedGoogle Scholar
  62. 62.
    Lalor PF, Sun PJ, Weston CJ, Martin-Santos A, Wakelam MJ, Adams DH (2007) Activation of vascular adhesion protein-1 on liver endothelium results in an NF-kappaB-dependent increase in lymphocyte adhesion. Hepatology 45:465–474PubMedGoogle Scholar
  63. 63.
    Liaskou E, Karikoski M, Reynolds GM, Lalor PF, Weston CJ, Pullen N, Salmi M, Jalkanen S, Adams DH (2011) Regulation of mucosal addressin cell adhesion molecule 1 expression in human and mice by vascular adhesion protein 1 amine oxidase activity. Hepatology 53:661–672PubMedCentralPubMedGoogle Scholar
  64. 64.
    Lund FE (2006) Signaling properties of CD38 in the mouse immune system: enzyme-dependent and -independent roles in immunity. Mol Med 12:328–333PubMedCentralPubMedGoogle Scholar
  65. 65.
    Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, Vaisitti T, Aydin S (2008) Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 88:841–886PubMedGoogle Scholar
  66. 66.
    Moreschi I, Bruzzone S, Bodrato N, Usai C, Guida L, Nicholas RA, Kassack MU, Zocchi E, De Flora A (2008) NAADP+ is an agonist of the human P2Y11 purinergic receptor. Cell Calcium 43:344–355PubMedGoogle Scholar
  67. 67.
    Charmandari E (2012) Primary generalized glucocorticoid resistance and hypersensitivity: the end-organ involvement in the stress response. Sci Signal 5:pt5PubMedGoogle Scholar
  68. 68.
    Haag F, Adriouch S, Brass A, Jung C, Moller S, Scheuplein F, Bannas P, Seman M, Koch-Nolte F (2007) Extracellular NAD and ATP: partners in immune cell modulation. Purinergic Signal 3:71–81PubMedCentralPubMedGoogle Scholar
  69. 69.
    Deaglio S, Dianzani U, Horenstein AL, Fernandez JE, van Kooten C, Bragardo M, Funaro A, Garbarino G, Di Virgilio F, Banchereau J, Malavasi F (1996) Human CD38 ligand. A 120-KDA protein predominantly expressed on endothelial cells. J Immunol 156:727–734PubMedGoogle Scholar
  70. 70.
    Hara-Yokoyama M, Kukimoto-Niino M, Terasawa K, Harumiya S, Podyma-Inoue KA, Hino N, Sakamoto K, Itoh S, Hashii N, Hiruta Y, Kawasaki N, Mishima-Tsumagari C, Kaitsu Y, Matsumoto T, Wakiyama M, Shirouzu M, Kasama T, Takayanagi H, Utsunomiya-Tate N, Takatsu K, Katada T, Hirabayashi Y, Yokoyama S, Yanagishita M (2012) Tetrameric interaction of the ectoenzyme CD38 on the cell surface enables its catalytic and raft-association activities. Structure 20:1585–1595PubMedGoogle Scholar
  71. 71.
    Deaglio S, Vaisitti T, Billington R, Bergui L, Omede P, Genazzani AA, Malavasi F (2007) CD38/CD19: a lipid raft-dependent signaling complex in human B cells. Blood 109:5390–5398PubMedGoogle Scholar
  72. 72.
    Partida-Sanchez S, Cockayne DA, Monard S, Jacobson EL, Oppenheimer N, Garvy B, Kusser K, Goodrich S, Howard M, Harmsen A, Randall TD, Lund FE (2001) Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat Med 7:1209–1216PubMedGoogle Scholar
  73. 73.
    Partida-Sanchez S, Gasser A, Fliegert R, Siebrands CC, Dammermann W, Shi G, Mousseau BJ, Sumoza-Toledo A, Bhagat H, Walseth TF, Guse AH, Lund FE (2007) Chemotaxis of mouse bone marrow neutrophils and dendritic cells is controlled by adp-ribose, the major product generated by the CD38 enzyme reaction. J Immunol 179:7827–7839PubMedGoogle Scholar
  74. 74.
    Shi G, Partida-Sanchez S, Misra RS, Tighe M, Borchers MT, Lee JJ, Simon MI, Lund FE (2007) Identification of an alternative G{alpha}q-dependent chemokine receptor signal transduction pathway in dendritic cells and granulocytes. J Exp Med 204:2705–2718PubMedCentralPubMedGoogle Scholar
  75. 75.
    Partida-Sanchez S, Goodrich S, Kusser K, Oppenheimer N, Randall TD, Lund FE (2004) Regulation of dendritic cell trafficking by the ADP-ribosyl cyclase CD38: impact on the development of humoral immunity. Immunity 20:279–291PubMedGoogle Scholar
  76. 76.
    Lischke T, Heesch K, Schumacher V, Schneider M, Haag F, Koch-Nolte F, Mittrucker HW (2013) CD38 controls the innate immune response against Listeria monocytogenes. Infect Immun 81:4091–4099PubMedGoogle Scholar
  77. 77.
    Choe CU, Lardong K, Gelderblom M, Ludewig P, Leypoldt F, Koch-Nolte F, Gerloff C, Magnus T (2011) CD38 exacerbates focal cytokine production, postischemic inflammation and brain injury after focal cerebral ischemia. PLoS One 6:e19046PubMedCentralPubMedGoogle Scholar
  78. 78.
    Postigo J, Iglesias M, Cerezo-Wallis D, Rosal-Vela A, Garcia-Rodriguez S, Zubiaur M, Sancho J, Merino R, Merino J (2012) Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis. PLoS One 7:e33534PubMedCentralPubMedGoogle Scholar
  79. 79.
    Guedes AG, Jude JA, Paulin J, Kita H, Lund FE, Kannan MS (2008) Role of CD38 in TNF-alpha-induced airway hyperresponsiveness. Am J Physiol Lung Cell Mol Physiol 294:L290–L299PubMedGoogle Scholar
  80. 80.
    Jin D, Liu HX, Hirai H, Torashima T, Nagai T, Lopatina O, Shnayder NA, Yamada K, Noda M, Seike T, Fujita K, Takasawa S, Yokoyama S, Koizumi K, Shiraishi Y, Tanaka S, Hashii M, Yoshihara T, Higashida K, Islam MS, Yamada N, Hayashi K, Noguchi N, Kato I, Okamoto H, Matsushima A, Salmina A, Munesue T, Shimizu N, Mochida S, Asano M, Higashida H (2007) CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446:41–45PubMedGoogle Scholar
  81. 81.
    Horenstein AL, Chillemi A, Zaccarello G, Bruzzone S, Quarona V, Zito A, Serra S, Malavasi F (2013) A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes. Oncoimmunology 2:e26246PubMedCentralPubMedGoogle Scholar
  82. 82.
    Funaro A, Ortolan E, Bovino P, Lo Buono N, Nacci G, Parrotta R, Ferrero E, Malavasi F (2009) Ectoenzymes and innate immunity: the role of human CD157 in leukocyte trafficking. Front Biosci 14:929–943, Landmark EdGoogle Scholar
  83. 83.
    Ortolan E, Tibaldi EV, Ferranti B, Lavagno L, Garbarino G, Notaro R, Luzzatto L, Malavasi F, Funaro A (2006) CD157 plays a pivotal role in neutrophil transendothelial migration. Blood 108:4214–4222PubMedGoogle Scholar
  84. 84.
    Funaro A, Ortolan E, Ferranti B, Gargiulo L, Notaro R, Luzzatto L, Malavasi F (2004) CD157 is an important mediator of neutrophil adhesion and migration. Blood 104:4269–4278PubMedGoogle Scholar
  85. 85.
    Lo Buono N, Parrotta R, Morone S, Bovino P, Nacci G, Ortolan E, Horenstein AL, Inzhutova A, Ferrero E, Funaro A (2011) The CD157-integrin partnership controls transendothelial migration and adhesion of human monocytes. J Biol Chem 286:18681–18691PubMedCentralPubMedGoogle Scholar
  86. 86.
    Proost P, Mortier A, Loos T, Vandercappellen J, Gouwy M, Ronsse I, Schutyser E, Put W, Parmentier M, Struyf S, Van Damme J (2007) Proteolytic processing of CXCL11 by CD13/aminopeptidase N impairs CXCR3 and CXCR7 binding and signaling and reduces lymphocyte and endothelial cell migration. Blood 110:37–44PubMedGoogle Scholar
  87. 87.
    Busso N, Wagtmann N, Herling C, Chobaz-Peclat V, Bischof-Delaloye A, So A, Grouzmann E (2005) Circulating CD26 is negatively associated with inflammation in human and experimental arthritis. Am J Pathol 166:433–442PubMedCentralPubMedGoogle Scholar
  88. 88.
    Preller V, Gerber A, Wrenger S, Togni M, Marguet D, Tadje J, Lendeckel U, Rocken C, Faust J, Neubert K, Schraven B, Martin R, Ansorge S, Brocke S, Reinhold D (2007) TGF-beta1-mediated control of central nervous system inflammation and autoimmunity through the inhibitory receptor CD26. J Immunol 178:4632–4640PubMedGoogle Scholar
  89. 89.
    Yan S, Gessner R, Dietel C, Schmiedek U, Fan H (2012) Enhanced ovalbumin-induced airway inflammation in CD26−/− mice. Eur J Immunol 42:533–540PubMedGoogle Scholar
  90. 90.
    Matheeussen V, Jungraithmayr W, De Meester I (2012) Dipeptidyl peptidase 4 as a therapeutic target in ischemia/reperfusion injury. Pharmacol Ther 136:267–282PubMedGoogle Scholar
  91. 91.
    Shah Z, Kampfrath T, Deiuliis JA, Zhong J, Pineda C, Ying Z, Xu X, Lu B, Moffatt-Bruce S, Durairaj R, Sun Q, Mihai G, Maiseyeu A, Rajagopalan S (2011) Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation 124:2338–2349PubMedGoogle Scholar
  92. 92.
    Koenen RR, Pruessmeyer J, Soehnlein O, Fraemohs L, Zernecke A, Schwarz N, Reiss K, Sarabi A, Lindbom L, Hackeng TM, Weber C, Ludwig A (2009) Regulated release and functional modulation of junctional adhesion molecule A by disintegrin metalloproteinases. Blood 113:4799–4809PubMedGoogle Scholar
  93. 93.
    Kurkijarvi R, Adams DH, Leino R, Mottonen T, Jalkanen S, Salmi M (1998) Circulating form of human vascular adhesion protein-1 (VAP-1): increased serum levels in inflammatory liver diseases. J Immunol 161:1549–1557PubMedGoogle Scholar
  94. 94.
    Sithu SD, English WR, Olson P, Krubasik D, Baker AH, Murphy G, D’Souza SE (2007) Membrane-type 1-matrix metalloproteinase regulates intracellular adhesion molecule-1 (ICAM-1)-mediated monocyte transmigration. J Biol Chem 282:25010–25019PubMedGoogle Scholar
  95. 95.
    Dreymueller D, Pruessmeyer J, Groth E, Ludwig A (2012) The role of ADAM-mediated shedding in vascular biology. Eur J Cell Biol 91:472–485PubMedGoogle Scholar
  96. 96.
    Schulz B, Pruessmeyer J, Maretzky T, Ludwig A, Blobel CP, Saftig P, Reiss K (2008) ADAM10 regulates endothelial permeability and T-Cell transmigration by proteolysis of vascular endothelial cadherin. Circ Res 102:1192–1201PubMedCentralPubMedGoogle Scholar
  97. 97.
    Gutierrez-Lopez MD, Gilsanz A, Yanez-Mo M, Ovalle S, Lafuente EM, Dominguez C, Monk PN, Gonzalez-Alvaro I, Sanchez-Madrid F, Cabanas C (2011) The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9. Cell Mol Life Sci 68:3275–3292PubMedGoogle Scholar
  98. 98.
    Tsubota Y, Frey JM, Tai PW, Welikson RE, Raines EW (2013) Monocyte ADAM17 promotes diapedesis during transendothelial migration: identification of steps and substrates targeted by metalloproteinases. J Immunol 190:4236–4244PubMedCentralPubMedGoogle Scholar
  99. 99.
    Long C, Hosseinkhani MR, Wang Y, Sriramarao P, Walcheck B (2012) ADAM17 activation in circulating neutrophils following bacterial challenge impairs their recruitment. J Leukoc Biol 92:667–672PubMedCentralPubMedGoogle Scholar
  100. 100.
    Chalaris A, Adam N, Sina C, Rosenstiel P, Lehmann-Koch J, Schirmacher P, Hartmann D, Cichy J, Gavrilova O, Schreiber S, Jostock T, Matthews V, Hasler R, Becker C, Neurath MF, Reiss K, Saftig P, Scheller J, Rose-John S (2010) Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. J Exp Med 207:1617–1624PubMedCentralPubMedGoogle Scholar
  101. 101.
    Eltzschig HK, Sitkovsky MV, Robson SC (2012) Purinergic signaling during inflammation. N Engl J Med 367:2322–2333PubMedCentralPubMedGoogle Scholar
  102. 102.
    Antonioli L, Blandizzi C, Pacher P, Hasko G (2013) Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 13:842–857PubMedGoogle Scholar
  103. 103.
    Pluskota E, Ma Y, Bledzka KM, Bialkowska K, Soloviev DA, Szpak D, Podrez EA, Fox PL, Hazen SL, Dowling JJ, Ma YQ, Plow EF (2013) Kindlin-2 regulates hemostasis by controlling endothelial cell-surface expression of ADP/AMP catabolic enzymes via a clathrin-dependent mechanism. Blood 122:2491–2499PubMedGoogle Scholar
  104. 104.
    Hyman MC, Petrovic-Djergovic D, Visovatti SH, Liao H, Yanamadala S, Bouis D, Su EJ, Lawrence DA, Broekman MJ, Marcus AJ, Pinsky DJ (2009) Self-regulation of inflammatory cell trafficking in mice by the leukocyte surface apyrase CD39. J Clin Invest 119:1136–1149PubMedCentralPubMedGoogle Scholar
  105. 105.
    Reutershan J, Vollmer I, Stark S, Wagner R, Ngamsri KC, Eltzschig HK (2009) Adenosine and inflammation: CD39 and CD73 are critical mediators in LPS-induced PMN trafficking into the lungs. FASEB J 23:473–482PubMedGoogle Scholar
  106. 106.
    Idzko M, KA C, Muller T, Durk T, Grimm M, Baudiss K, Vieira RP, Cicko S, Boehlke C, Zech A, Sorichter S, Pelletier J, Sevigny J, Robson SC (2013) Attenuated allergic airway inflammation in Cd39 null mice. Allergy 68:472–480PubMedGoogle Scholar
  107. 107.
    Narravula S, Lennon PF, Mueller BU, Colgan SP (2000) Regulation of endothelial CD73 by adenosine: paracrine pathway for enhanced endothelial barrier function. J Immunol 165:5262–5268PubMedGoogle Scholar
  108. 108.
    Henttinen T, Jalkanen S, Yegutkin GG (2003) Adherent leukocytes prevent adenosine formation and impair endothelial barrier function by ecto-5′-nucleotidase/CD73-dependent mechanism. J Biol Chem 278:24888–24895PubMedGoogle Scholar
  109. 109.
    Grunewald JK, Ridley AJ (2010) CD73 represses pro-inflammatory responses in human endothelial cells. J Inflamm (Lond) 7:10Google Scholar
  110. 110.
    Takedachi M, Qu D, Ebisuno Y, Oohara H, Joachims ML, McGee ST, Maeda E, McEver RP, Tanaka T, Miyasaka M, Murakami S, Krahn T, Blackburn MR, Thompson LF (2008) CD73-generated adenosine restricts lymphocyte migration into draining lymph nodes. J Immunol 180:6288–6296PubMedCentralPubMedGoogle Scholar
  111. 111.
    Koszalka P, Ozuyaman B, Huo Y, Zernecke A, Flogel U, Braun N, Buchheiser A, Decking UK, Smith ML, Sevigny J, Gear A, Weber AA, Molojavyi A, Ding Z, Weber C, Ley K, Zimmermann H, Godecke A, Schrader J (2004) Targeted disruption of CD73/ecto-5′-nucleotidase alters thromboregulation and augments vascular inflammatory response. Circ Res 95:814–821PubMedGoogle Scholar
  112. 112.
    Zernecke A, Bidzhekov K, Ozuyaman B, Fraemohs L, Liehn EA, Luscher-Firzlaff JM, Luscher B, Schrader J, Weber C (2006) CD73/ecto-5′-nucleotidase protects against vascular inflammation and neointima formation. Circulation 113:2120–2127PubMedGoogle Scholar
  113. 113.
    Kiss J, Yegutkin GG, Koskinen K, Savunen T, Jalkanen S, Salmi M (2007) IFN-beta protects from vascular leakage via up-regulation of CD73. Eur J Immunol 37:3334–3338PubMedGoogle Scholar
  114. 114.
    Tsukamoto H, Chernogorova P, Ayata K, Gerlach UV, Rughani A, Ritchey JW, Ganesan J, Follo M, Zeiser R, Thompson LF, Idzko M (2012) Deficiency of CD73/ecto-5′-nucleotidase in mice enhances acute graft-versus-host disease. Blood 119:4554–4564PubMedCentralPubMedGoogle Scholar
  115. 115.
    Algars A, Karikoski M, Yegutkin GG, Stoitzner P, Niemela J, Salmi M, Jalkanen S (2011) Different role of CD73 in leukocyte trafficking via blood and lymph vessels. Blood 117:4387–4393PubMedGoogle Scholar
  116. 116.
    Whiteside TL, Jackson EK (2013) Adenosine and prostaglandin e2 production by human inducible regulatory T cells in health and disease. Front Immunol 4:212PubMedCentralPubMedGoogle Scholar
  117. 117.
    Airas L, Niemela J, Jalkanen S (2000) CD73 engagement promotes lymphocyte binding to endothelial cells via a lymphocyte function-associated antigen-1-dependent mechanism. J Immunol 165:5411–5417PubMedGoogle Scholar
  118. 118.
    Yegutkin GG, Marttila-Ichihara F, Karikoski M, Niemelä J, Laurila J, Elima K, Jalkanen S, Salmi M (2011) Altered purinergic signalling in CD73 deficient mice inhibits tumor progression by regulating immunosuppressive leukocytes. Eur J Immunol 41:1231–1241PubMedGoogle Scholar
  119. 119.
    Stagg J, Divisekera U, Duret H, Sparwasser T, Teng MW, Darcy PK, Smyth MJ (2011) CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res 71:2892–2900PubMedGoogle Scholar
  120. 120.
    Abella A, Garcia-Vicente S, Viguerie N, Ros-Baro A, Camps M, Palacin M, Zorzano A, Marti L (2004) Adipocytes release a soluble form of VAP-1/SSAO by a metalloprotease-dependent process and in a regulated manner. Diabetologia 47:429–438PubMedGoogle Scholar
  121. 121.
    Kurkijarvi R, Yegutkin GG, Gunson BK, Jalkanen S, Salmi M, Adams DH (2000) Circulating soluble vascular adhesion protein 1 accounts for the increased serum monoamine oxidase activity in chronic liver disease. Gastroenterology 119:1096–1103PubMedGoogle Scholar
  122. 122.
    Boomsma F, van den Meiracker AH, Winkel S, Aanstoot HJ, Batstra MR, Man in ’t Veld AJ, Bruining GJ (1999) Circulating semicarbazide-sensitive amine oxidase is raised both in type I (insulin-dependent), in type II (non-insulin-dependent) diabetes mellitus and even in childhood type I diabetes at first clinical diagnosis. Diabetologia 42:233–237PubMedGoogle Scholar
  123. 123.
    Garpenstrand H, Ekblom J, Backlund LB, Oreland L, Rosenqvist U (1999) Elevated plasma semicarbazide-sensitive amine oxidase (SSAO) activity in type 2 diabetes mellitus complicated by retinopathy. Diabet Med 16:514–521PubMedGoogle Scholar
  124. 124.
    Yu PH, Deng YL (1998) Endogenous formaldehyde as a potential factor of vulnerability of atherosclerosis: involvement of semicarbazide-sensitive amine oxidase-mediated methylamine turnover. Atherosclerosis 140:357–363PubMedGoogle Scholar
  125. 125.
    Li HY, Lin MS, Wei JN, Hung CS, Chiang FT, Lin CH, Hsu HC, Su CY, Wu MY, Smith DJ, Vainio J, Chen MF, Chuang LM (2009) Change of serum vascular adhesion protein-1 after glucose loading correlates to carotid intima-medial thickness in non-diabetic subjects. Clin Chim Acta 403:97–101PubMedGoogle Scholar
  126. 126.
    Li HY, Jiang YD, Chang TJ, Wei JN, Lin MS, Lin CH, Chiang FT, Shih SR, Hung CS, Hua CH, Smith DJ, Vanio J, Chuang LM (2011) Serum vascular adhesion protein-1 predicts 10-year cardiovascular and cancer mortality in individuals with type 2 diabetes. Diabetes 60:993–999PubMedCentralPubMedGoogle Scholar
  127. 127.
    Aalto K, Maksimow M, Juonala M, Viikari J, Jula A, Kahonen M, Jalkanen S, Raitakari OT, Salmi M (2012) Soluble vascular adhesion protein-1 correlates with cardiovascular risk factors and early atherosclerotic manifestations. Arterioscler Thromb Vasc Biol 32:523–532PubMedGoogle Scholar
  128. 128.
    Stolen CM, Madanat R, Marti L, Kari S, Yegutkin GG, Sariola H, Zorzano A, Jalkanen S (2004) Semicarbazide sensitive amine oxidase overexpression has dual consequences: insulin mimicry and diabetes-like complications. FASEB J 18:702–704PubMedGoogle Scholar
  129. 129.
    Li YI, Hung JS, Yu TY, Liou JM, Wei JN, Kao HL, Chuang LM, Shun CT, Lee PH, Lai HS, Su CY, Li HY, Liang JT (2014) Serum vascular adhesion protein-1 predicts all-cause mortality and cancer-related mortality in subjects with colorectal cancer. Clin Chim Acta 428:51–56PubMedGoogle Scholar
  130. 130.
    Yasuda H, Toiyama Y, Ohi M, Mohri Y, Miki C, Kusunoki M (2011) Serum soluble vascular adhesion protein-1 is a valuable prognostic marker in gastric cancer. J Surg Oncol 103:695–699PubMedGoogle Scholar
  131. 131.
    Kemik O, Sumer A, Kemik AS, Itik V, Dulger AC, Purisa S, Tuzun S (2010) Human vascular adhesion protein-1 (VAP-1): serum levels for hepatocellular carcinoma in non-alcoholic and alcoholic fatty liver disease. World J Surg Oncol 8:83PubMedCentralPubMedGoogle Scholar
  132. 132.
    Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N (2011) CD38 and chronic lymphocytic leukemia: a decade later. Blood 118:3470–3478PubMedCentralPubMedGoogle Scholar
  133. 133.
    Gao Y, Camacho LH, Mehta K (2007) Retinoic acid-induced CD38 antigen promotes leukemia cells attachment and interferon-gamma/interleukin-1beta-dependent apoptosis of endothelial cells: implications in the etiology of retinoic acid syndrome. Leuk Res 31:455–463PubMedGoogle Scholar
  134. 134.
    Funaro A, Horenstein AL, Calosso L, Morra M, Tarocco RP, Franco L, De Flora A, Malavasi F (1996) Identification and characterization of an active soluble form of human CD38 in normal and pathological fluids. Int Immunol 8:1643–1650PubMedGoogle Scholar
  135. 135.
    Zumaquero E, Munoz P, Cobo M, Lucena G, Pavon EJ, Martin A, Navarro P, Garcia-Perez A, Ariza-Veguillas A, Malavasi F, Sancho J, Zubiaur M (2010) Exosomes from human lymphoblastoid B cells express enzymatically active CD38 that is associated with signaling complexes containing CD81, Hsc-70 and Lyn. Exp Cell Res 316:2692–2706PubMedGoogle Scholar
  136. 136.
    Wu XR, He XS, Chen YF, Yuan RX, Zeng Y, Lian L, Zou YF, Lan N, Wu XJ, Lan P (2012) High expression of CD73 as a poor prognostic biomarker in human colorectal cancer. J Surg Oncol 106:130–137PubMedGoogle Scholar
  137. 137.
    Lu XX, Chen YT, Feng B, Mao XB, Yu B, Chu XY (2013) Expression and clinical significance of CD73 and hypoxia-inducible factor-1alpha in gastric carcinoma. World J Gastroenterol 19:1912–1918PubMedCentralPubMedGoogle Scholar
  138. 138.
    Oh HK, Sin JI, Choi J, Park SH, Lee TS, Choi YS (2012) Overexpression of CD73 in epithelial ovarian carcinoma is associated with better prognosis, lower stage, better differentiation and lower regulatory T cell infiltration. J Gynecol Oncol 23:274–281PubMedCentralPubMedGoogle Scholar
  139. 139.
    Pulte D, Olson KE, Broekman MJ, Islam N, Ballard HS, Furman RR, Olson AE, Marcus AJ (2007) CD39 activity correlates with stage and inhibits platelet reactivity in chronic lymphocytic leukemia. J Transl Med 5:23PubMedCentralPubMedGoogle Scholar
  140. 140.
    Vainio PJ, Kortekangas-Savolainen O, Mikkola JH, Jaakkola K, Kalimo K, Jalkanen S, Veromaa T (2005) Safety of blocking vascular adhesion protein-1 in patients with contact dermatitis. Basic Clin Pharmacol Toxicol 96:429–435PubMedGoogle Scholar
  141. 141.
    Trivedi PJ, Adams DH (2013) Mucosal immunity in liver autoimmunity: a comprehensive review. J Autoimmun 46:97–111PubMedGoogle Scholar
  142. 142.
    Bellingan G, Maksimow M, Howell D, Stotz M, Beale R, Beatty M, Walsh T, Binning A, Davidson A, Kuper M, Shah A, Cooper J, Waris M, Yegutkin G, Jalkanen J, Salmi M, Piippo I, Jalkanen M, Monrgomery H, Jalkanen S (2014) Intravenous interferon-beta-1a (FP-1201) up-regulates lung CD73 and is associated with a reduction in mortality in acute lung injury and acute respiratory distress syndrome. Lancet Respir Med 2(2):98–107. doi:10.1016/S2213-2600(13)70259-5 Google Scholar
  143. 143.
    Kiviniemi TO, Yegutkin GG, Toikka JO, Paul S, Aittokallio T, Janatuinen T, Knuuti J, Ronnemaa T, Koskenvuo JW, Hartiala JJ, Jalkanen S, Raitakari OT (2012) Pravastatin-induced improvement in coronary reactivity and circulating ATP and ADP levels in young adults with type 1 diabetes. Front Physiol 3:338PubMedCentralPubMedGoogle Scholar
  144. 144.
    Ledoux S, Laouari D, Essig M, Runembert I, Trugnan G, Michel JB, Friedlander G (2002) Lovastatin enhances ecto-5′-nucleotidase activity and cell surface expression in endothelial cells: implication of rho-family GTPases. Circ Res 90:420–427PubMedGoogle Scholar
  145. 145.
    Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets—what are the challenges? Nat Rev Drug Discov 12:265–286PubMedCentralPubMedGoogle Scholar
  146. 146.
    Sun CX, Zhong H, Mohsenin A, Morschl E, Chunn JL, Molina JG, Belardinelli L, Zeng D, Blackburn MR (2006) Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury. J Clin Invest 116:2173–2182PubMedCentralPubMedGoogle Scholar
  147. 147.
    Baetta R, Corsini A (2011) Pharmacology of dipeptidyl peptidase-4 inhibitors: similarities and differences. Drugs 71:1441–1467PubMedGoogle Scholar
  148. 148.
    Zhong J, Rao X, Rajagopalan S (2013) An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis 226:305–314PubMedGoogle Scholar
  149. 149.
    Farag SS, Srivastava S, Messina-Graham S, Schwartz J, Robertson MJ, Abonour R, Cornetta K, Wood L, Secrest A, Strother RM, Jones DR, Broxmeyer HE (2013) In vivo DPP-4 inhibition to enhance engraftment of single-unit cord blood transplants in adults with hematological malignancies. Stem Cells Dev 22:1007–1015PubMedCentralPubMedGoogle Scholar
  150. 150.
    Hersher R (2012) Companies wager high on CD38-targeting drugs for blood cancer. Nat Med 18:1446PubMedGoogle Scholar
  151. 151.
    Kuroda J, Nagoshi H, Shimura Y, Taniwaki M (2013) Elotuzumab and daratumumab: emerging new monoclonal antibodies for multiple myeloma. Expert Rev Anticancer Ther 13:1081–1088PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.MediCity Research LaboratoryUniversity of TurkuTurkuFinland
  2. 2.Department of Medical Biochemistry and GeneticsUniversity of TurkuTurkuFinland
  3. 3.Department of Medical Microbiology and ImmunologyUniversity of TurkuTurkuFinland
  4. 4.National Institute for Health and WelfareTurkuFinland

Personalised recommendations