Seminars in Immunopathology

, Volume 35, Issue 6, pp 637–644

Aryl hydrocarbon receptor and experimental autoimmune arthritis

  • Nam Trung Nguyen
  • Taisuke Nakahama
  • Tadamitsu Kishimoto
Review

Abstract

Aryl hydrocarbon receptor (Ahr) is thought to be a crucial factor that regulates immune responses. Many Ahr-mediated immune regulatory mechanisms have been discovered, which will likely enhance our understanding of the molecular pathogenesis of autoimmune inflammation including rheumatoid arthritis (RA). RA is a systemic inflammatory disease that affects approximately 1 % of the population and is characterized by chronic inflammation of the synovium and subsequent joint destruction. Recent findings showed that Ahr plays critical roles in the development of Th17 cells, which are key effector T cells in a variety of human autoimmune diseases including RA. Consistent with these findings, our previous study demonstrated that Ahr in T cells is important for the development of collagen-induced arthritis, a widely used murine model of human RA, possibly via the induction of Th17 cells. In addition, Ahr is an attractive molecule because tobacco smoke is a well-known environmental risk factor for RA development and Ahr agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, 3-methyl cholanthrene, and benzo[a]pyrene, are major toxic components in cigarettes. This review summarizes recent findings on Ahr functions in immune cells in the context of RA pathogenesis during stimulation with smoking-derived ligands. We also discuss the potential link between Ahr and novel factors, such as microRNAs, in the development of RA, thereby providing further mechanistic insight into this autoimmune disorder.

Keywords

Dioxin receptor Rheumatoid arthritis 

References

  1. 1.
    Klareskog L, Catrina AI, Paget S (2009) Rheumatoid arthritis. Lancet 373:659–672PubMedCrossRefGoogle Scholar
  2. 2.
    Firestein GS (2005) Immunologic mechanisms in the pathogenesis of rheumatoid arthritis. J Clin Rheumatol 11:S39–S44PubMedCrossRefGoogle Scholar
  3. 3.
    Janossy G, Panayi G, Duke O, Bofill M, Poulter LW, Goldstein G (1981) Rheumatoid arthritis: a disease of T-lymphocyte/macrophage immunoregulation. Lancet 2:839–842PubMedCrossRefGoogle Scholar
  4. 4.
    Harris ED Jr (1990) Rheumatoid arthritis. Pathophysiology and implications for therapy. N Engl J Med 322:1277–1289PubMedCrossRefGoogle Scholar
  5. 5.
    Brennan F, Foey A (2002) Cytokine regulation in RA synovial tissue: role of T cell/macrophage contact-dependent interactions. Arthritis Res 4:S177–S182PubMedCrossRefGoogle Scholar
  6. 6.
    Nishimoto N, Ito A, Ono M, Tagoh H, Matsumoto T, Tomita T, Ochi T, Yoshizaki K (2000) IL-6 inhibits the proliferation of fibroblastic synovial cells from rheumatoid arthritis patients in the presence of soluble IL-6 receptor. Int Immunol 12:187–193PubMedCrossRefGoogle Scholar
  7. 7.
    Nishimoto N, Sasai M, Shima Y, Nakagawa M, Matsumoto T, Shirai T, Kishimoto T, Yoshizaki K (2000) Improvement in Castleman's disease by humanized anti-interleukin-6 receptor antibody therapy. Blood 95:56–61PubMedGoogle Scholar
  8. 8.
    Nishimoto N, Kishimoto T (2006) Interleukin 6: from bench to bedside. Nat Clin Pract Rheumatol 2:619–626PubMedCrossRefGoogle Scholar
  9. 9.
    McInnes IB, Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7:429–442PubMedCrossRefGoogle Scholar
  10. 10.
    McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219PubMedCrossRefGoogle Scholar
  11. 11.
    Astry B, Harberts E, Moudgil KD (2011) A cytokine-centric view of the pathogenesis and treatment of autoimmune arthritis. J Interferon Cytokine Res 31:927–940PubMedCrossRefGoogle Scholar
  12. 12.
    Wing K, Sakaguchi S (2010) Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 11:7–13PubMedCrossRefGoogle Scholar
  13. 13.
    Okamoto K, Takayanagi H (2011) Regulation of bone by the adaptive immune system in arthritis. Arthritis Res Ther 13:219PubMedCrossRefGoogle Scholar
  14. 14.
    Nistala K, Wedderburn LR (2009) Th17 and regulatory T cells: rebalancing pro- and anti-inflammatory forces in autoimmune arthritis. Rheumatology (Oxford) 48:602–606CrossRefGoogle Scholar
  15. 15.
    Eisenstein EM, Williams CB (2009) The T(reg)/Th17 cell balance: a new paradigm for autoimmunity. Pediatr Res 65:26R–31RPubMedCrossRefGoogle Scholar
  16. 16.
    Maini R, St Clair EW, Breedveld F, Furst D, Kalden J, Weisman M, Smolen J, Emery P, Harriman G, Feldmann M, Lipsky P (1999) Infiximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 354:1932–1939PubMedCrossRefGoogle Scholar
  17. 17.
    Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, Fleischmann RM, Fox RI, Jackson CG, Lange M, Burge DJ (1999) A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 340:253–259PubMedCrossRefGoogle Scholar
  18. 18.
    Weinblatt ME, Keystone EC, Furst DE, Moreland LW, Weisman MH, Birbara CA, Teoh LA, Fischkoff SA, Chartash EK (2003) Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum 48:35–45PubMedCrossRefGoogle Scholar
  19. 19.
    Nishimoto N, Hashimoto J, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Murata N, van der Heijde D, Kishimoto T (2007) Study of active controlled monotherapy used for rheumatoid arthritis, an IL-6 inhibitor (SAMURAI): evidence of clinical and radiographic benefit from an x ray reader-blinded randomised controlled trial of tocilizumab. Ann Rheum Dis 66:1162–1167PubMedCrossRefGoogle Scholar
  20. 20.
    Nishimoto N, Kanakura Y, Aozasa K, Johkoh T, Nakamura M, Nakano S, Nakano N, Ikeda Y, Sasaki T, Nishioka K, Hara M, Taguchi H, Kimura Y, Kato Y, Asaoku H, Kumagai S, Kodama F, Nakahara H, Hagihara K, Yoshizaki K, Kishimoto T (2005) Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood 106:2627–2632PubMedCrossRefGoogle Scholar
  21. 21.
    Nishimoto N, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Azuma J, Kishimoto T (2009) Study of active controlled tocilizumab monotherapy for rheumatoid arthritis patients with an inadequate response to methotrexate (SATORI): significant reduction in disease activity and serum vascular endothelial growth factor by IL-6 receptor inhibition therapy. Mod Rheumatol 19:12–19PubMedCrossRefGoogle Scholar
  22. 22.
    Emery P, Keystone E, Tony HP, Cantagrel A, van Vollenhoven R, Sanchez A, Alecock E, Lee J, Kremer J (2008) IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. Ann Rheum Dis 67:1516–1523PubMedCrossRefGoogle Scholar
  23. 23.
    Smolen JS, Beaulieu A, Rubbert-Roth A, Ramos-Remus C, Rovensky J, Alecock E, Woodworth T, Alten R (2008) Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet 371:987–997PubMedCrossRefGoogle Scholar
  24. 24.
    Smolen JS, Schoels MM, Nishimoto N, Breedveld FC, Burmester GR, Dougados M, Emery P, Ferraccioli G, Gabay C, Gibofsky A, Gomez-Reino JJ, Jones G, Kvien TK, Murakami M, Betteridge N, Bingham CO 3rd, Bykerk V, Choy EH, Combe B, Cutolo M, Graninger W, Lanas A, Martin-Mola E, Montecucco C, Ostergaard M, Pavelka K, Rubbert-Roth A, Sattar N, Scholte-Voshaar M, Tanaka Y, Trauner M, Valentini G, Winthrop KL, de Wit M, van der Heijde D (2013) Consensus statement on blocking the effects of interleukin-6 and in particular by interleukin-6 receptor inhibition in rheumatoid arthritis and other inflammatory conditions. Ann Rheum Dis 72:482–492PubMedCrossRefGoogle Scholar
  25. 25.
    Kimura A, Naka T, Nohara K, Fujii-Kuriyama Y, Kishimoto T (2008) Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc Natl Acad Sci USA 105:9721–9726PubMedCrossRefGoogle Scholar
  26. 26.
    Kimura A, Naka T, Nakahama T, Chinen I, Masuda K, Nohara K, Fujii-Kuriyama Y, Kishimoto T (2009) Aryl hydrocarbon receptor in combination with Stat1 regulates LPS-induced inflammatory responses. J Exp Med 206:2027–2035PubMedCrossRefGoogle Scholar
  27. 27.
    Kimura A, Kishimoto T (2010) IL-6: regulator of Treg/Th17 balance. Eur J Immunol 40:1830–1835PubMedCrossRefGoogle Scholar
  28. 28.
    Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71PubMedCrossRefGoogle Scholar
  29. 29.
    Quintana FJ, Murugaiyan G, Farez MF, Mitsdoerffer M, Tukpah AM, Burns EJ, Weiner HL (2010) An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 107:20768–20773PubMedCrossRefGoogle Scholar
  30. 30.
    Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, Stockinger B (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109PubMedCrossRefGoogle Scholar
  31. 31.
    Veldhoen M, Hirota K, Christensen J, O'Garra A, Stockinger B (2009) Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J Exp Med 206:43–49PubMedCrossRefGoogle Scholar
  32. 32.
    Stevens EA, Mezrich JD, Bradfield CA (2009) The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology 127:299–311PubMedCrossRefGoogle Scholar
  33. 33.
    Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, Nohara K, Fujii-Kuriyama Y, Kishimoto T (2010) Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci USA 107:19961–19966PubMedCrossRefGoogle Scholar
  34. 34.
    Nakahama T, Kimura A, Nguyen NT, Chinen I, Hanieh H, Nohara K, Fujii-Kuriyama Y, Kishimoto T (2011) Aryl hydrocarbon receptor deficiency in T cells suppresses the development of collagen-induced arthritis. Proc Natl Acad Sci USA 108:14222–14227PubMedCrossRefGoogle Scholar
  35. 35.
    Tamaki A, Hayashi H, Nakajima H, Takii T, Katagiri D, Miyazawa K, Hirose K, Onozaki K (2004) Polycyclic aromatic hydrocarbon increases mRNA level for interleukin 1 beta in human fibroblast-like synoviocyte line via aryl hydrocarbon receptor. Biol Pharm Bull 27:407–410PubMedCrossRefGoogle Scholar
  36. 36.
    Kitamura M, Kasai A (2007) Cigarette smoke as a trigger for the dioxin receptor-mediated signaling pathway. Cancer Lett 252:184–194PubMedCrossRefGoogle Scholar
  37. 37.
    Kobayashi S, Okamoto H, Iwamoto T, Toyama Y, Tomatsu T, Yamanaka H, Momohara S (2008) A role for the aryl hydrocarbon receptor and the dioxin TCDD in rheumatoid arthritis. Rheumatology (Oxford) 47:1317–1322CrossRefGoogle Scholar
  38. 38.
    Baka Z, Buzás E, Nagy G (2009) Rheumatoid arthritis and smoking: putting the pieces together. Arthritis Res Ther 11:238PubMedCrossRefGoogle Scholar
  39. 39.
    Feldmann M, Brennan FM, Maini RN (1996) Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 14:397–440PubMedCrossRefGoogle Scholar
  40. 40.
    Oliver JE, Silman AJ (2006) Risk factors for the development of rheumatoid arthritis. Scand J Rheumatol 35:169–174PubMedCrossRefGoogle Scholar
  41. 41.
    Graninger W, Smolen J (2002) Treatment of rheumatoid arthritis by TNF-blocking agents. Int Arch Allergy Immunol 127:10–14PubMedCrossRefGoogle Scholar
  42. 42.
    Yokota S, Miyamae T, Imagawa T, Iwata N, Katakura S, Mori M, Woo P, Nishimoto N, Yoshizaki K, Kishimoto T (2005) Therapeutic efficacy of humanized recombinant anti-interleukin-6 receptor antibody in children with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 52:818–825PubMedCrossRefGoogle Scholar
  43. 43.
    Yokota S, Imagawa T, Mori M, Miyamae T, Aihara Y, Takei S, Iwata N, Umebayashi H, Murata T, Miyoshi M, Tomiita M, Nishimoto N, Kishimoto T (2008) Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet 371:998–1006PubMedCrossRefGoogle Scholar
  44. 44.
    Yokota S, Imagawa T, Mori M, Miyamae T, Takei S, Iwata N, Umebayashi H, Murata T, Miyoshi M, Tomiita M, Nishimoto N, Kishimoto T (2013) Long-term treatment of systemic juvenile idiopathic arthritis with tocilizumab: results of an open-label extension study in Japan. Ann Rheum Dis 72:627–628PubMedCrossRefGoogle Scholar
  45. 45.
    Field M, Chu C, Feldmann M, Maini RN (1991) Interleukin-6 localisation in the synovial membrane in rheumatoid arthritis. Rheumatol Int 11:45–50PubMedCrossRefGoogle Scholar
  46. 46.
    Yoshizaki K, Matsuda T, Nishimoto N, Kuritani T, Taeho L, Aozasa K, Nakahata T, Kawai H, Tagoh H, Komori T (1989) Pathogenic significance of interleukin-6 (IL-6/BSF-2) in Castleman's disease. Blood 74:1360–1367PubMedGoogle Scholar
  47. 47.
    Yoshizaki K, Kuritani T, Kishimoto T (1992) Interleukin-6 in autoimmune disorders. Semin Immunol 4:155–166PubMedGoogle Scholar
  48. 48.
    Hirano T, Matsuda T, Turner M, Miyasaka N, Buchan G, Tang B, Sato K, Shimizu M, Maini R, Feldmann M, Kishimoto T (1988) Excessive production of interleukin 6/B cell stimulatory factor-2 in rheumatoid arthritis. Eur J Immunol 18:1797–1801PubMedCrossRefGoogle Scholar
  49. 49.
    Kishimoto T (2005) Interleukin-6: from basic science to medicine–40 years in immunology. Annu Rev Immunol 23:1–21PubMedCrossRefGoogle Scholar
  50. 50.
    Kishimoto T (2006) Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther 8:S2PubMedCrossRefGoogle Scholar
  51. 51.
    Tanaka T, Narazaki M, Kishimoto T (2012) Therapeutic targeting of the interleukin-6 receptor. Annu Rev Pharmacol Toxicol 52:199–219PubMedCrossRefGoogle Scholar
  52. 52.
    Ogata A, Umegaki N, Katayama I, Kumanogoh A, Tanaka T (2012) Psoriatic arthritis in two patients with an inadequate response to treatment with tocilizumab. Joint Bone Spine 79:85–87PubMedCrossRefGoogle Scholar
  53. 53.
    Lubberts E (2010) Th17 cytokines and arthritis. Semin Immunopathol 32:43–53PubMedCrossRefGoogle Scholar
  54. 54.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238PubMedCrossRefGoogle Scholar
  55. 55.
    Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F (2007) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8:942–949PubMedCrossRefGoogle Scholar
  56. 56.
    Hirota K, Hashimoto M, Yoshitomi H, Tanaka S, Nomura T, Yamaguchi T, Iwakura Y, Sakaguchi N, Sakaguchi S (2007) T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis. J Exp Med 204:41–47PubMedCrossRefGoogle Scholar
  57. 57.
    Fujimoto M, Serada S, Mihara M, Uchiyama Y, Yoshida H, Koike N, Ohsugi Y, Nishikawa T, Ripley B, Kimura A, Kishimoto T, Naka T (2008) Interleukin-6 blockade suppresses autoimmune arthritis in mice by the inhibition of inflammatory Th17 responses. Arthritis Rheum 58:3710–3719PubMedCrossRefGoogle Scholar
  58. 58.
    Iwanami K, Matsumoto I, Tanaka-Watanabe Y, Inoue A, Mihara M, Ohsugi Y, Mamura M, Goto D, Ito S, Tsutsumi A, Kishimoto T, Sumida T (2008) Crucial role of the interleukin-6/interleukin-17 cytokine axis in the induction of arthritis by glucose-6-phosphate isomerase. Arthritis Rheum 58:754–763PubMedCrossRefGoogle Scholar
  59. 59.
    Samson M, Audia S, Janikashvili N, Ciudad M, Trad M, Fraszczak J, Ornetti P, Maillefert JF, Miossec P, Bonnotte B (2012) Brief report: inhibition of interleukin-6 function corrects Th17/Treg cell imbalance in patients with rheumatoid arthritis. Arthritis Rheum 64:2499–2503PubMedCrossRefGoogle Scholar
  60. 60.
    Nguyen LP, Bradfield CA (2008) The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol 21:102–116PubMedCrossRefGoogle Scholar
  61. 61.
    Vogel CF, Li W, Wu D, Miller JK, Sweeney C, Lazennec G, Fujisawa Y, Matsumura F (2011) Interaction of aryl hydrocarbon receptor and NF-κB subunit RelB in breast cancer is associated with interleukin-8 overexpression. Arch Biochem Biophys 512:78–86PubMedCrossRefGoogle Scholar
  62. 62.
    Ohtake F, Baba A, Takada I, Okada M, Iwasaki K, Miki H, Takahashi S, Kouzmenko A, Nohara K, Chiba T, Fujii-Kuriyama Y, Kato S (2007) Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature 446:562–566PubMedCrossRefGoogle Scholar
  63. 63.
    Ohtake F, Fujii-Kuriyama Y, Kato S (2009) AhR acts as an E3 ubiquitin ligase to modulate steroid receptor functions. Biochem Pharmacol 77:474–484PubMedCrossRefGoogle Scholar
  64. 64.
    Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M (2009) Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 31:321–330PubMedCrossRefGoogle Scholar
  65. 65.
    Geboes L, Dumoutier L, Kelchtermans H, Schurgers E, Mitera T, Renauld JC, Matthys P (2009) Proinflammatory role of the Th17 cytokine interleukin-22 in collagen-induced arthritis in C57BL/6 mice. Arthritis Rheum 60:390–395PubMedCrossRefGoogle Scholar
  66. 66.
    Ciolino HP, Daschner PJ, Yeh GC (1998) Resveratrol inhibits transcription of CYP1A1 in vitro by preventing activation of the aryl hydrocarbon receptor. Cancer Res 58:5707–5712PubMedGoogle Scholar
  67. 67.
    Casper RF, Quesne M, Rogers IM, Shirota T, Jolivet A, Milgrom E, Savouret JF (1999) Resveratrol has antagonist activity on the aryl hydrocarbon receptor: implications for prevention of dioxin toxicity. Mol Pharmacol 56:784–790PubMedGoogle Scholar
  68. 68.
    Revel A, Raanani H, Younglai E, Xu J, Rogers I, Han R, Savouret JF, Casper RF (2003) Resveratrol, a natural aryl hydrocarbon receptor antagonist, protects lung from DNA damage and apoptosis caused by benzo[a]pyrene. J Appl Toxicol 23:255–261PubMedCrossRefGoogle Scholar
  69. 69.
    Xuzhu G, Komai-Koma M, Leung BP, Howe HS, McSharry C, McInnes IB, Xu D (2012) Resveratrol modulates murine collagen-induced arthritis by inhibiting Th17 and B-cell function. Ann Rheum Dis 71:129–135PubMedCrossRefGoogle Scholar
  70. 70.
    Imler TJ Jr, Petro TM (2009) Decreased severity of experimental autoimmune encephalomyelitis during resveratrol administration is associated with increased IL-17 + IL-10+ T cells, CD4(−) IFN-gamma + cells, and decreased macrophage IL-6 expression. Int Immunopharmacol 9:134–143PubMedCrossRefGoogle Scholar
  71. 71.
    Sánchez-Fidalgo S, Cárdeno A, Villegas I, Talero E, de la Lastra CA (2010) Dietary supplementation of resveratrol attenuates chronic colonic inflammation in mice. Eur J Pharmacol 633:78–84PubMedCrossRefGoogle Scholar
  72. 72.
    Youn J, Lee JS, Na HK, Kundu JK, Surh YJ (2009) Resveratrol and piceatannol inhibit iNOS expression and NF-kappaB activation in dextran sulfate sodium-induced mouse colitis. Nutr Cancer 61:847–854PubMedCrossRefGoogle Scholar
  73. 73.
    Singh NP, Hegde VL, Hofseth LJ, Nagarkatti M, Nagarkatti P (2007) Resveratrol (trans-3,5,4'-trihydroxystilbene) ameliorates experimental allergic encephalomyelitis, primarily via induction of apoptosis in T cells involving activation of aryl hydrocarbon receptor and estrogen receptor. Mol Pharmacol 72:1508–1521PubMedCrossRefGoogle Scholar
  74. 74.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedCrossRefGoogle Scholar
  75. 75.
    Baltimore D, Boldin MP, O'Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845PubMedCrossRefGoogle Scholar
  76. 76.
    Pauley KM, Cha S, Chan EK (2009) MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun 32:189–194PubMedCrossRefGoogle Scholar
  77. 77.
    Ceribelli A, Nahid MA, Satoh M, Chan EK (2011) MicroRNAs in rheumatoid arthritis. FEBS Lett 585:3667–3674PubMedCrossRefGoogle Scholar
  78. 78.
    Duroux-Richard I, Jorgensen C, Apparailly F (2012) What do microRNAs mean for rheumatoid arthritis? Arthritis Rheum 64:11–20PubMedCrossRefGoogle Scholar
  79. 79.
    Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, Li Z, Wu Z, Pei G (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10:1252–1259PubMedCrossRefGoogle Scholar
  80. 80.
    O'Connell RM, Kahn D, Gibson WS, Round JL, Scholz RL, Chaudhuri AA, Kahn ME, Rao DS, Baltimore D (2010) MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33:607–619PubMedCrossRefGoogle Scholar
  81. 81.
    Nakasa T, Shibuya H, Nagata Y, Niimoto T, Ochi M (2011) The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum 63:1582–1590PubMedCrossRefGoogle Scholar
  82. 82.
    Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, Huang X, Zhou H, de Vries N, Tak PP, Chen S, Shen N (2009) MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60:1065–1075PubMedCrossRefGoogle Scholar
  83. 83.
    Mycko MP, Cichalewska M, Machlanska A, Cwiklinska H, Mariasiewicz M, Selmaj KW (2012) MicroRNA-301a regulation of a T-helper 17 immune response controls autoimmune demyelination. Proc Natl Acad Sci USA 109:E1248–E1257PubMedCrossRefGoogle Scholar
  84. 84.
    Nakahama T, Hanieh H, Nguyen NT, Chinen I, Ripley B, Millrine D, Lee S, Nyati KK, Dubey PK, Chowdhury K, Kawahara Y, Kishimoto T (2013) Aryl hydrocarbon receptor-mediated induction of the microRNA-132/212 cluster promotes interleukin-17-producing T-helper cell differentiation. Proc Natl Acad Sci USA 110:11964–11969Google Scholar
  85. 85.
    Cui G, Qin X, Wu L, Zhang Y, Sheng X, Yu Q, Sheng H, Xi B, Zhang JZ, Zang YQ (2011) Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J Clin Invest 121:658–670PubMedCrossRefGoogle Scholar
  86. 86.
    Tredici G, Miloso M, Nicolini G, Galbiati S, Cavaletti G, Bertelli A (1999) Resveratrol, map kinases and neuronal cells: might wine be a neuroprotectant? Drugs Exp Clin Res 25:99–103PubMedGoogle Scholar
  87. 87.
    Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342PubMedCrossRefGoogle Scholar
  88. 88.
    Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506PubMedCrossRefGoogle Scholar
  89. 89.
    Lee KW, Lee HJ (2006) The roles of polyphenols in cancer chemoprevention. Biofactors 26:105–121PubMedCrossRefGoogle Scholar
  90. 90.
    Rahman I, Biswas SK, Kirkham PA (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72:1439–1452PubMedCrossRefGoogle Scholar
  91. 91.
    O'Donnell EF, Saili KS, Koch DC, Kopparapu PR, Farrer D, Bisson WH, Mathew LK, Sengupta S, Kerkvliet NI, Tanguay RL, Kolluri SK (2010) The anti-inflammatory drug leflunomide is an agonist of the aryl hydrocarbon receptor. PLoS One 5:e13128PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nam Trung Nguyen
    • 1
    • 2
  • Taisuke Nakahama
    • 1
    • 3
  • Tadamitsu Kishimoto
    • 1
  1. 1.Laboratory of Immune Regulation, WPI-Immunology Frontier Research CenterOsaka UniversitySuitaJapan
  2. 2.National Key Laboratory of Gene TechnologyInstitute of Biotechnology, Vietnam Academy of Science and TechnologyHa NoiVietnam
  3. 3.Laboratory of RNA Function, Graduate School of MedicineOsaka UniversitySuitaJapan

Personalised recommendations